×

Preference modeling by rectangular bilattices. (English) Zbl 1235.68231

Torra, Vincenç (ed.) et al., Modeling decisions for artificial intelligence. Third international conference, MDAI 2006, Tarragona, Spain, April 3–5, 2006. Proceedings. Berlin: Springer (ISBN 3-540-32780-0/pbk). Lecture Notes in Computer Science 3885. Lecture Notes in Artificial Intelligence, 22-33 (2006).
Summary: Many realistic decision aid problems are fraught with facets of ambiguity, uncertainty and conflict, which hamper the effectiveness of conventional and fuzzy preference modeling approaches, and command the use of more expressive representations. In the past, some authors have already identified Ginsberg’s/Fitting’s theory of bilattices as a naturally attractive candidate framework for representing uncertain and potentially conflicting preferences, yet none of the existing approaches addresses the real expressive power of bilattices, which lies hidden in their associated truth and knowledge orders. As a consequence, these approaches have to incorporate additional conventions and ‘tricks’ into their modus operandi, making the results unintuitive and/or tedious. By contrast, the aim of this paper is to demonstrate the potential of (rectangular) bilattices in encoding not just the problem statement, but also its generic solution strategy.
For the entire collection see [Zbl 1096.68008].

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03G10 Logical aspects of lattices and related structures
06B75 Generalizations of lattices
Full Text: DOI

References:

[1] Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5(1), 25–63 (1996) · Zbl 0851.03017 · doi:10.1007/BF00215626
[2] Arieli, O., Avron, A.: Bilattices and paraconsistency. In: Batens, D., Mortensen, C., Priest, G., Van Bendegem, J. (eds.) Frontiers of Paraconsistent Logic, pp. 11–27. Research Studies Press (2000) · Zbl 0994.03021
[3] Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.E.: Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices. In: Ruan, D., D’Hondt, P., De Cock, M., Nachtegael, M., Kerre, E.E. (eds.) Applied Computational Intelligence, pp. 57–64. World Scientific, Singapore (2004) · doi:10.1142/9789812702661_0014
[4] Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.E.: Bilattice-based squares and triangles. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 563–575. Springer, Heidelberg (2005) · Zbl 1122.03310 · doi:10.1007/11518655_48
[5] Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian) (1983)
[6] Avron, A.: The structure of interlaced bilattices. Journal of Mathematical Structures in Computer Science 6, 287–299 (1996) · Zbl 0856.06005 · doi:10.1017/S0960129500001018
[7] Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press (1977)
[8] Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company, Dordrecht (1977) · doi:10.1007/978-94-010-1161-7_2
[9] Brafman, R., Junker, U. (eds.): Multidisciplinary IJCAI 2005 Workshop on Advances in Preference Handling (2005), The proceedings is available online at: http://wikix.ilog.fr/wiki/bin/view/Preference05/WebHome
[10] Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by bilattice-based squares and triangles. In: IEEE Transactions on Fuzzy Sets and Systems (accepted, 2006) · Zbl 1122.03310
[11] Cornelis, C., Atanassov, K.T., Kerre, E.E.: Intuitionistic fuzzy sets and interval-valued fuzzy sets: a critical comparison. In: Wagenknecht, M., Hampel, R. (eds.) Proc. 3rd Int. Conf. in Fuzzy Logic and Technology (EUSFLAT 2003), pp. 159–163 (2003)
[12] Cornelis, C., Deschrijver, G., Kerre, E.E.: Square and triangle: reflections on two prominent mathematical structures for the representation of imprecision. Notes on Intuitionistic Fuzzy Sets 9(3), 11–21 (2003) · Zbl 1166.03319
[13] De Baets, B., Delgado, M., Fodor, J., Herrera, F., Herrera-Viedma, E., Martinez, L. (eds.): International Journal of Intelligent Systems, vol. 18(7) (2003), Special issue on preference modeling and applications · Zbl 1026.00505
[14] De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104(1), 61–75 (1999) · Zbl 0935.03060 · doi:10.1016/S0165-0114(98)00259-0
[15] Deschrijver, G., Cornelis, C., Kerre, E.E.: Square and triangle: a comparison. In: Proc. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 1389–1396 (2004)
[16] Esteva, F., Garcia, P., Godo, L.: Enriched interval bilattices and partial many-valued logics: an approach to deal with graded truth and imprecision. Uncertainty, Fuzziness and Knowledge-based Systems 2(1), 37–54 (1994) · Zbl 1232.03013 · doi:10.1142/S0218488594000055
[17] Fitting, M.: Bilattices in logic programming. In: Epstein, G. (ed.) Proc. 20th International Symposium on Multiple-Valued Logic, pp. 238–246 (1990) · doi:10.1109/ISMVL.1990.122627
[18] Fitting, M.: Kleene’s logic, generalized. Journal of Logic and Computation 1, 797–810 (1992) · Zbl 0744.03025 · doi:10.1093/logcom/1.6.797
[19] Fitting, M.: Kleene’s three-valued logics and their children. Fundamenta Informaticae 20, 113–131 (1994) · Zbl 0804.03016
[20] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht (1994) · Zbl 0827.90002 · doi:10.1007/978-94-017-1648-2
[21] Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling: Loyola-like approach. Fuzzy Optimization and Decision Making 1, 93–111 (2002) · Zbl 1091.91504 · doi:10.1023/A:1013731910441
[22] Ginsberg, M.L.: Multi-valued logics: A uniform approach to reasoning in artificial intelligence. Computer Intelligence 4, 256–316 (1988)
[23] Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Journal Math. Anal. Appl. 21(1), 1–17 (1987) · Zbl 0635.68103
[24] Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference modelling. In: Proc. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1998), pp. 302–309 (1998)
[25] Roubens, M., Vincke, P.: Preference modelling. Lecture Notes in Economics and Mathematical Systems, 250 (1985) · Zbl 0572.90001
[26] Sambuc, R.: Fonctions {\(\Phi\)}-floues. Application à l’aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, University of Marseille (1975)
[27] Tsoukiàs, A., Perny, P., Vincke, P.: From concordance/discordance to the modelling of positive and negative reasons in decision aiding. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Slowiński, R., Vanderpooten, D. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honor of Bernard Roy, pp. 147–174. Kluwer, Dordrecht (2002) · Zbl 1059.90088 · doi:10.1007/978-1-4615-0843-4_7
[28] Tsoukiàs, A., Vincke, P.: A new axiomatic foundation of partial comparability. Theory and Decision 39, 79–114 (1995) · Zbl 0856.90009 · doi:10.1007/BF01078870
[29] Tsoukiàs, A., Vincke, P.: Extended preference structures in MCDA. In: Clímaco, J. (ed.) Multi-criteria Analysis, pp. 37–50. Springer, Heidelberg (1997) · Zbl 0893.90006
[30] Türkşen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20(2), 191–210 (1986) · Zbl 0618.94020 · doi:10.1016/0165-0114(86)90077-1
[31] Van de Walle, B., De Baets, B., Kerre, E.E.: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures (I). General argumentation. Fuzzy Sets and Systems 97(3), 349–359 (1998) · Zbl 0936.91012 · doi:10.1016/S0165-0114(96)00327-2
[32] Van de Walle, B., De Baets, B., Kerre, E.E.: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures (II). The identity case. Fuzzy Sets and Systems 99(3), 303–310 (1998) · Zbl 1083.91503 · doi:10.1016/S0165-0114(96)00396-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.