×

Validation of large eddy simulation method for study of flatness and skewness of decaying compressible magnetohydrodynamic turbulence. (English) Zbl 1234.76031

Summary: We study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F50 Compressibility effects in turbulence
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Agullo O., Müller W.C., Knaepen B., Carati D.: Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling. Phys. Plasmas 8(7), 3502–3505 (2001) · doi:10.1063/1.1372337
[2] Biskamp D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003) · Zbl 1145.76300
[3] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid. Phys. Plasmas 13(3), 032304 (2006) · Zbl 1090.76036 · doi:10.1063/1.2171705
[4] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Subgrid-scale modelling in large-eddy simulations of compressible magnetohydrodynamic turbulence. Russ. J. Numer. Anal. Math. Model. 21(1), 1–20 (2006) · Zbl 1090.76036 · doi:10.1515/156939806775696878
[5] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Subgrid-scale modelling of compressible magnetohydrodynamic turbulence in heat-conducting plasma. Phys. Plasmas 13(10), 104501 (2006) · Zbl 1090.76036 · doi:10.1063/1.2356693
[6] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Development of large eddy simulation for modeling of decaying compressible MHD turbulence. Phys. Fluids 19(5), 055106 (2007) · Zbl 1146.76350 · doi:10.1063/1.2728936
[7] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Assessment of subgrid-scale models for decaying compressible MHD turbulence. Flow, Turbul. Combust. 80(1), 21–35 (2008). doi: 10.1007/s10494-007-9100-8 · Zbl 1228.76188 · doi:10.1007/s10494-007-9100-8
[8] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Modeling of compressible magnetohydrodynamic turbulence in electrically and heat conducting fluid using large eddy simulation. Phys. Fluids 20(8), 085106 (2008) · Zbl 1182.76147 · doi:10.1063/1.2969472
[9] Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Three-dimensional modeling of compressible magnetohydrodynamic turbulence in the local interstellar medium. Astrophys. J. 686, 1137–1144 (2008) · Zbl 1182.76147 · doi:10.1086/591642
[10] Germano M., Piomelli U., Moin P., Cabot W.: A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991) · Zbl 0825.76334 · doi:10.1063/1.857955
[11] Gomez T., Sagaut P., Schilling O., Zhou Y.: Large-eddy simulation of very large kinetic and magnetic reynolds number isotropic magnetohydrodynamic turbulence using a spectral subgrid model. Phys. Fluids 19(4), 032304 (2007) · Zbl 1146.76395
[12] Jiménez M.A., Cuxart J.: Study of the probability density functions from a large-eddy simulation for a stably stratified boundary layer. Boundary-Layer Meteorol. 118, 401–420 (2006) · doi:10.1007/s10546-005-9009-5
[13] Knaepen B., Moin P.: Large-eddy simulation of conductive flows at low magnetic reynolds number. Phys. Fluids 16(5), 1255–1261 (2004) · Zbl 1186.76287 · doi:10.1063/1.1651484
[14] Lazarian A.: Intermittency of magnetohydrodynamic turbulence: astrophysical perspective. Int. J. Mod. Phys. D 15, 1099–1111 (2006) · Zbl 1119.85006 · doi:10.1142/S0218271806008590
[15] Lilly D.: A proposed modification of the germano subgrid scale closure method. Phys. Fluids A 4, 633–635 (1992) · doi:10.1063/1.858280
[16] Müller W.C., Carati D.: Dynamic gradient-diffudion subgrid models for incompressible magnetohydrodynamics turbulence. Phys. Plasmas 9(3), 824–834 (2002) · doi:10.1063/1.1448498
[17] Müller W.C., Carati D.: Large-eddy simulation of magnetohydrodynamic turbulence. Comput. Phys. Commun. 147, 344–347 (2002) · Zbl 1060.76066
[18] Park N., Yoo J., Choi H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes. J. Comput. Phys. 198, 580–616 (2004) · Zbl 1116.76373 · doi:10.1016/j.jcp.2004.01.017
[19] Sagaut P., Grohens R.: Discrete filters for large eddy simulation. Int. J. Numer. Mech. Fluids 31, 1195–1220 (1999) · Zbl 0993.76039 · doi:10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H
[20] Smagorinsky J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963) · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[21] Sreenivasan K.R., Antonia R.A.: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997) · doi:10.1146/annurev.fluid.29.1.435
[22] Theobald M., Fox P., Sofia S.: A subgrid-scale resistivity for magnetohydrodynamics. Phys. Plasmas 1(9), 3016–3032 (1994) · doi:10.1063/1.870542
[23] Vorobev A., Zikanov O.: Smagorinsky constant in les modeling of anisotropic MHD turbulence. Theor. Comput. Fluid Dyn. 22(3–4), 317–325 (2007) · Zbl 1161.76503 · doi:10.1007/s00162-007-0064-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.