×

An algebraic multigrid method for \(Q_2-Q_1\) mixed discretizations of the Navier-Stokes equations. (English) Zbl 1463.65055

Summary: Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily colocated at mesh points. Specifically, we investigate a \(Q_2-Q_1\) mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees of freedom (DOFs) are defined at spatial locations where there are no corresponding pressure DOFs. Thus, AMG approaches leveraging this colocated structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity DOF relationships of the \(Q_2-Q_1\) discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity DOFs resembles that on the finest grid. To define coefficients within the intergrid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

Matlab; MueMat; MueLu; IFISS; CUBIT

References:

[1] BriggsWL, Van HensonE, McCormickSF. A multigrid tutorial. 2nd ed. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2000. · Zbl 0958.65128
[2] TrottenbergU, OosterleeCW, SchüllerA. Multigrid. Orlando, FL, USA: Academic Press; 2001. · Zbl 0976.65106
[3] FullenbachT, StübenK. Algebraic multigrid for selected PDE systems. In: BemelmansJ (ed.), BrighiB (ed.), BrillardA (ed.), ChipotM (ed.), ConradF (ed.), ShafrirI (ed.), ValenteV (ed.), CaffarelliG (ed.), editors. Rolduc: World Scientific; 2002. p. 399-409.
[4] BrezziF, FortinM. Mixed and hybrid finite element methods. New York, NY, USA: Springer‐Verlag; 1991. · Zbl 0788.73002
[5] GunzburgerM. Finite element methods for viscous incompressible flows. Boston, MA, USA: Academic Press; 1989. · Zbl 0697.76031
[6] ElmanHC, SilvesterDJ, WathenAJ. Finite elements and fast iterative solvers: With applications in incompressible fluid dynamics. Oxford, UK: Oxford University Press; 2005. · Zbl 1083.76001
[7] OlsonLN, SchroderJ, TuminaroR. A general interpolation strategy for algebraic multigrid using energy minimization. SIAM J Sci Comput. 2011;33(2):966-991. · Zbl 1233.65096
[8] BrandtA, BrannickJ, KahlK, LivshitsI. Bootstrap AMG. SIAM J Sci Comput. 2011;33(2):612-632. · Zbl 1227.65120
[9] WesselingP. Principles of computational fluid dynamics. Berlin, Germany: Springer‐Verlag; 2001.
[10] WabroM. Coupled algebraic multigrid methods for the Oseen problem. Comput Vis Sci. 2004;7(3):141-151. · Zbl 1120.65326
[11] LashukI, VassilevskiP. Element agglomeration coarse Raviart‐Thomas spaces with improved approximation properties. Numer Linear Algebra Appl. 2012;19(2):414-426. · Zbl 1274.65302
[12] LashukI, VassilevskiP. The construction of the coarse de Rham complexes with improved approximation properties. Comput Methods Appl Math. 2014;14(2):257-303. · Zbl 1284.65156
[13] WabroMF. AMGe—Coarsening strategies and application to the Oseen equations. SIAM J Sci Comput. 2006;27(6):2077-2097. · Zbl 1136.76413
[14] AdamsMF. Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics. Numer Linear Algebra Appl. 2004;11(2‐3):141-153. · Zbl 1164.65515
[15] GeeMW, KüttlerU, WallWA. Truly monolithic algebraic multigrid for fluid‐structure interaction. Int J Numer Methods Eng. 2011;85(8):987-1016. · Zbl 1217.74121
[16] YangH, ZulehnerW. Numerical simulation of fluid‐structure interaction problems on hybrid meshes with algebraic multigrid methods. J Comput Appl Math. 2011;235(18):5367-5379. · Zbl 1222.76064
[17] CyrE, ShadidJ, TuminaroR, PawlowskiR, ChaconL. A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD. SIAM J Sci Comput. 2013;35(3):B701-B730. · Zbl 1273.76269
[18] TaylorC, HoodP. A numerical solution of the Navier‐Stokes equations using the finite element technique. Comput Fluids. 1973;1(1):73-100. · Zbl 0328.76020
[19] BrooksAN, HughesTJ. Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations. Comput Methods Appl Mech Eng. 1982;32(1):199-259. · Zbl 0497.76041
[20] WiesnerT, TuminaroR, WallW, GeeM. Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections. Numer Linear Algebra Appl. 2014;21(3):415-438. · Zbl 1340.65305
[21] HarlowFH, WelchJE. Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. Phys Fluids. 1965;8(12):2182-2189. · Zbl 1180.76043
[22] BrandtA, McCormickS, RugeJ. Algebraic multigrid (AMG) for sparse matrix equations. In: EvansDJ (ed.), editor. Sparsity and its applications. Cambridge, UK: Cambridge University Press, 1984. · Zbl 0548.65014
[23] RugeJ, StübenK. Algebraic multigrid (AMG). In: McCormickSF (ed.), editor. Multigrid methods, Frontiers in Applied Mathematics, vol. 3. Philadelphia, PA, USA: SIAM, 1987. p. 73-130. · Zbl 0659.65094
[24] MandelJ, BrezinaM, VaněkP. Energy optimization of algebraic multigrid bases. Computing. 1999;62(3):205-228. · Zbl 0942.65034
[25] BrandtA. General highly accurate algebraic coarsening. Electron Trans Numer Anal. 2000;10:1-20. · Zbl 0951.65096
[26] BrandtA. Multiscale scientific computation: Review 2001. Multiscale and Multiresolution Methods; Springer-Verlag, 2001;1-96.
[27] BrannickJ, ZikatanovL. Algebraic multigrid methods based on compatible relaxation and energy minimization. In: WidlundO (ed.), KeyesDE (ed.), editors. Domain decomposition methods in science and engineering xvi, Lecture Notes in Computational Science and Engineering, vol. 55. Berlin, Germany: Springer, 2007. p. 15-26.
[28] KolevTV, VassilevskiPS. AMG by element agglomeration and constrained energy minimization interpolation. Numer Linear Algebra Appl. 2006;13(9):771-788. · Zbl 1174.65546
[29] VassilevskiPS. General constrained energy minimization interpolation mappings for AMG. SIAM J Sci Comput. 2010;32(1):1-13. · Zbl 1209.65133
[30] WagnerC. On the algebraic construction of multilevel transfer operators. Computing. 2000 Aug;65(1):73-95. · Zbl 0968.65104
[31] WanWL, ChanTF, SmithB. An energy‐minimizing interpolation for robust multigrid methods. SIAM J Sci Comput. 2000;21(4):1632-1649. · Zbl 0966.65098
[32] XuJ, ZikatanovL. On an energy minimizing basis for algebraic multigrid methods. Comput Vis Sci. 2004;7(3):121-127. · Zbl 1077.65130
[33] VaněkP, MandelJ, BrezinaM. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing. 1996;56(3):179-196. · Zbl 0851.65087
[34] VankaSP. Block‐implicit multigrid solution of Navier‐Stokes equations in primitive variables. J Comput Phys. 1986;65(1):138-158. · Zbl 0606.76035
[35] MacLachlanSP, OosterleeCW. Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs. Numer Linear Algebra Appl. 2011;15(4):751-774. · Zbl 1265.65256
[36] BraessD, SarazinR. An efficient smoother for the Stokes problem. Appl Numer Math. 1997;23(1):3-19. · Zbl 0874.65095
[37] LarinM, ReuskenA. A comparative study of efficient iterative solvers for generalized Stokes equations. Numer Linear Algebra Appl. 2008;15(1):13-34. · Zbl 1212.65493
[38] VolkerJ, TobiskaL. Numerical performance of smoothers in coupled multigrid methods for the parallel solution of the incompressible Navier‐Stokes equations. Int J Numer Methods Fluids. 2000;33(4):453-473. · Zbl 0979.76047
[39] ElmanHC, RamageA, SilvesterDJ. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans Math Softw. 2007;33(2): Article No. 14. · Zbl 1365.65326
[40] GaidamourJ, HuJJ, TuminaroRS, SiefertC. MueMat: A Matlab toolbox to experiment with new multigrid preconditioners; 2011. Available from: http://www.osti.gov/scitech/servlets/purl/1140699
[41] ProkopenkoA, HuJJ, WiesnerTA, SiefertCM, TuminaroRS. MueLu User’s Guide 1.0. Technical Report SAND 2014‐18874. Albuquerque, NM: Sandia National Labs; 2014.
[42] ur RehmanM, VuikC, SegalG. A comparison of preconditioners for incompressible Navier-Stokes solvers. Int J Numer Methods Fluids. 2008;57(12):1731-1751. · Zbl 1262.76083
[43] DahlO, WilleSØ. An ILU preconditioner with coupled node fill‐in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier‐Stokes equations. Int J Numer Methods Fluids. 1992;15(5):525-544. · Zbl 0825.76446
[44] AdlerJH, BensonTR, CyrEC, MacLachlanSP, TuminaroRS. Monolithic multigrid methods for two‐dimensional resistive magnetohydrodynamics. SIAM J Sci Comput. 2016;38(1):B1-B24. · Zbl 1338.76131
[45] BoffiD, BrezziF, FortinM. Mixed finite element methods and applications. Berlin: Springer; 2013. · Zbl 1277.65092
[46] BlackerT, BohnhoffW, EdwardsT. CUBIT mesh generation environment. Volume 1: Users manual. Technical Report SAND-94‐1100. Albuquerque: Sandia National Labs; 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.