×

An adaptive cubature Kalman filter for nonlinear systems against randomly occurring injection attacks. (English) Zbl 1510.93321

Summary: The problem of state estimation for nonlinear dynamic systems in the presence of randomly occurring injection attacks (ROIAs) is investigated. This paper requires no prior statistical information of the attacks, which relaxes the assumption of the existing result that the attack probability and the probability density function of attack signals need to be known. With the distribution of the attack probability and attack signals modeled as Beta distribution and Gaussian mixture distribution, a variational Bayesian based adaptive cubature Kalman filter is proposed to approximate the joint posterior distribution of the system state vector and unknown parameters. In addition, the update rules of the state and the statistical parameters of attacks are analytically derived by employing the fixed-point iteration approach. Finally, the effectiveness of the proposed filter is validated through numerical results.

MSC:

93E11 Filtering in stochastic control theory

Software:

PRMLT
Full Text: DOI

References:

[1] Bar-Shalom, Y.; Li, X. R.; Kirubarajan, T., Estimation with Applications to Tracking and Navigation (2001), Wiley: Wiley New York
[2] Bilik, I.; Tabrikian, J., Maneuvering target tracking in the presence of glint using the nonlinear gaussian mixture Kalman filter, IEEE Trans. Aerosp. Electron. Syst., 46, 1, 246-262 (2010)
[3] Xiao, H. Z.; Li, Z. J.; Yang, C. G., RGB-D sensor-based visual target detection and tracking for an intelligent wheelchair robot in indoors environments, Int. J. Control Autom. Syst., 13, 3, 521-529 (2015)
[4] Zhu, H.; Yuen, K.; Mihaylova, L.; Leung, H., Overview of environment perception for intelligent vehicles, IEEE Trans. Intell. Transp. Syst., 18, 10, 2584-2601 (2017)
[5] Li, L.; Yang, M.; Wang, C. X.; Wang, B., Rigid point set registration based on cubature Kalman filter and its application in intelligent vehicles, IEEE Trans. Intell. Transp. Syst., 19, 6, 1754-1765 (2017)
[6] Kalman, R. E., A new approach to linear filtering and prediction problem, J. Basic Eng., 82, 34-45 (1960)
[7] Ljung, L., Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Automat. Control, 24, 1, 36-50 (1979) · Zbl 0399.93054
[8] Hermoso-Carazo, A.; Linares-Perez, J., Different approaches for state filtering in nonlinear systems with uncertain observations, Appl. Math. Comput., 187, 2, 708-724 (2007) · Zbl 1114.93102
[9] Wu, X. D.; Song, Z. H., Multi-step prediction of chaotic time-series with intermittent failures based on the generalized nonlinear filtering methods, Appl. Math. Comput., 219, 16, 8584-8594 (2013) · Zbl 1288.62143
[10] Hao, G.; Sun, S. L.; Li, Y., Nonlinear weighted measurement fusion unscented Kalman filter with asymptotic optimality, Inf. Sci., 299, 85-98 (2015) · Zbl 1360.93697
[11] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE Trans. Automat. Control, 44, 4, 714-728 (1999) · Zbl 0967.93090
[12] Julier, S.; Uhlmann, J.; Durrant-Whyte, H. F., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control, 45, 3, 477-482 (2000) · Zbl 0973.93053
[13] Xiong, K.; Zhang, H. Y.; Chan, C. W., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 2, 261-270 (2006) · Zbl 1103.93045
[14] Cappe, O.; Godsill, S. J.; Moulines, E., An overview of existing methods and recent advances in sequential Monte Carlo, Proc. IEEE, 95, 5, 899-924 (2007)
[15] Song, W. H.; Wang, Z. D.; Wang, J. N.; Shan, J. Y., Particle filtering for a class of cyber-physical systems under round-robin protocol subject to randomly occurring deception attacks, Inf. Sci., 544, 298-307 (2021) · Zbl 1478.93695
[16] Arasaratnam, I.; Haykin, S., Cubature Kalman filters, IEEE Trans. Automat. Control, 54, 6, 1254-1269 (2009) · Zbl 1367.93637
[17] Zhao, L. Q.; Wang, J. L.; Yu, T.; Jian, H., Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator, Appl. Math. Comput., 256, 352-367 (2015) · Zbl 1338.93384
[18] Dong, P.; Jing, Z. L.; Leung, H.; Shen, K., Variational Bayesian adaptive cubature information filter based on Wishart distribution, IEEE Trans. Automat. Control, 62, 11, 6051-6057 (2017) · Zbl 1458.62073
[19] Mehra, R. K., Approaches to adaptive filtering, IEEE Trans. Automat. Control, 17, 5, 693-698 (1972) · Zbl 0261.93036
[20] Li, X. R.; Bar-Shalom, Y., A recursive multiple model approach to noise identification, IEEE Trans. Aerosp. Electron. Syst., 30, 3, 671-684 (1994)
[21] Krummenauer, R.; Cazarotto, M.; Lopes, A.; Larzabal, P., Improving the threshold performance of maximum likelihood estimation of direction of arrival, Signal Process., 90, 5, 1582-1590 (2010) · Zbl 1194.94101
[22] Tzikas, D. G.; Likas, A. C.; Galatsanos, N. P., The variational approximation for Bayesian inference, IEEE Signal Process. Mag., 25, 6, 131-146 (2008)
[23] Sarkka, S.; Nummenmaa, A., Recursive noise adaptive Kalman filtering by variational Bayesian approximations, IEEE Trans. Automat. Control, 54, 3, 596-600 (2009) · Zbl 1367.93658
[24] Huang, Y. L.; Zhang, Y. G.; Wu, Z. M.; Li, N., A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices, IEEE Trans. Automat. Control, 63, 2, 594-601 (2018) · Zbl 1390.93790
[25] Jia, G. L.; Huang, Y. L.; Zhang, Y. G.; Chambers, J., A novel adaptive Kalman filter with unknown probability of measurement loss, IEEE Signal Process. Lett., 26, 12, 1862-1866 (2019)
[26] Zhu, H.; Zhang, G. R.; Li, Y. F.; Leung, H., An adaptive Kalman filter with inaccurate noise covariances in the presence of outliers, IEEE Trans. Automat. Control (2021)
[27] Xu, H.; Duan, K. Q.; Yuan, H. D.; Xie, W. C.; Wang, Y. L., Adaptive fixed-lag smoothing algorithms based on the variational Bayesian method, IEEE Trans. Automat. Control, 66, 10, 4881-4887 (2021) · Zbl 1536.93479
[28] Zhang, T.; Wang, J.; Zhang, L.; Guo, L., A student’s t-based measurement uncertainty filter for SINS/USBL tightly integration navigation system, IEEE Trans. Veh. Technol., 70, 9, 8627-8638 (2021)
[29] Cui, H. R.; Wang, X. H.; Gao, S. H.; Li, T. C., A Gaussian mixture regression model based adaptive filter for non-Gaussian noise without a priori statistic, Signal Process., 190, 1-13 (2021)
[30] Mo, Y. L.; Sinopoli, B., On the performance degradation of cyber-physical systems under stealthy integrity attacks, IEEE Trans. Automat. Control, 61, 9, 2618-2624 (2016) · Zbl 1359.93257
[31] An, L. W.; Yang, G. H., Distributed secure state estimation for cyber-physical systems under sensor attacks, Automatica, 107, 526-538 (2019) · Zbl 1429.93237
[32] Lu, A. Y.; Yang, G. H., Malicious attacks on state estimation against distributed control systems, IEEE Trans. Automat. Control, 65, 9, 3911-3918 (2020) · Zbl 1533.93774
[33] Zhang, H.; Cheng, P.; Shi, L.; Chen, J. M., Optimal denial-of-service attack scheduling with energy constraint, IEEE Trans. Automat. Control, 60, 11, 3023-3028 (2015) · Zbl 1360.68302
[34] An, L. W.; Yang, G. H., Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks, IEEE Trans. Cybern., 49, 3, 827-838 (2017)
[35] Guo, Z. Y.; Shi, D. W.; Quevedo, D. E.; Shi, L., Secure state estimation against integrity attacks: a gaussian mixture model approach, IEEE Trans. Signal Process., 67, 1, 194-207 (2018) · Zbl 1414.62349
[36] Yang, W.; Zhang, X. T.; Luo, W. J.; Zuo, Z. Y., Detection against randomly occurring complex attacks on distributed state estimation, Inf. Sci., 547, 539-552 (2021) · Zbl 1478.93685
[37] Wang, D. J.; Chen, F.; Meng, B.; Hu, X. L., Event-based secure \(h_\infty\) load frequency control for delayed power systems subject to deception attacks, Appl. Math. Comput., 394, 1-13 (2021) · Zbl 1508.93089
[38] Chen, B.; Ho, D. W.C.; Hu, G., Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks, IEEE Trans. Cybern., 48, 6, 1862-1876 (2017)
[39] Ding, D. R.; Han, Q. L.; Xiang, Y.; Ge, X. H., A survey on security control and attack detection for industrial cyber-physical systems, Neurocomputing, 275, 1674-1683 (2018)
[40] Cao, Z. R.; Niu, Y. G.; Song, J., Finite-time sliding-mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks, IEEE Trans. Automat. Control, 65, 3, 1264-1271 (2020) · Zbl 1533.93672
[41] Saul, L. K.; Jaakkola, T.; Jordan, M. I., Mean field theory for sigmoid belief networks, J. Artif. Intell. Res., 4, 61-76 (1996) · Zbl 0900.68379
[42] Bishop, C. M., Pattern Recognition and Machine Learning (2006), Springer: Springer New York · Zbl 1107.68072
[43] Dias, S. S.; Bruno, M. G.S., Cooperative target tracking using decentralized particle filtering and RSS sensors, IEEE Trans. Signal Process, 61, 14, 3632-3646 (2013) · Zbl 1393.94552
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.