×

Event-triggered distributed fusion estimation with random transmission delays. (English) Zbl 1442.68018

Summary: Recently distributed fusion estimation problem has been widely studied because of better estimation accuracy, reliability and robustness. In this paper, an event-triggered distributed fusion estimation problem is investigated for a multi-sensor nonlinear networked system with random transmission delays. For each communication channel, an event-triggered scheduling mechanism is introduced to reduce excessive measurement transmission, and a \(D\)-length buffer is used to retrieve partly delayed measurements. Based on a sequential covariance intersection fusion technique, a distributed fusion estimation algorithm is designed utilizing local estimations calculated by modified unscented Kalman filter (UKF). Sufficient conditions are established to ensure boudedness of fusion estimation error covariance. Finally, comparative simulations indicate that measurement transmission is reduced for each communication channel while still maintaining satisfactory estimation performance by the proposed technique.

MSC:

68M18 Wireless sensor networks as related to computer science
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
Full Text: DOI

References:

[1] Bhatia, R., Matrix analysis, Graduate Texts in Mathematics (1996) · Zbl 0863.15001
[2] Bai, Y. Q., Kernel function-based interior-point algorithms for conic optimization (2010), Science Press: Science Press Beijing, China · Zbl 1198.90004
[3] Chen, W.; Shi, D.; Wang, J.; Shi, L., Event-triggered state estimation: experimental performance assessment and comparative study, IEEE Trans. Control Syst. Technol., 25, 5, 1865-1872 (2017)
[4] Chen, B.; Zhang, W. A.; Yu, L.; Hu, G., Distributed fusion estimation with communication bandwidth constraints, IEEE Trans. Autom. Control, 60, 5, 1398-1403 (2015) · Zbl 1360.93665
[5] Chen, B.; Zhang, W. A.; Yu, L., Distributed fusion estimation with missing measurements, random transmission delays and packet dropouts, IEEE Trans. Autom. Control, 59, 7, 1961-1967 (2014) · Zbl 1360.93664
[6] Deng, Z.; Qi, R., Multi-sensor information fusion steady-state Kalman filter, Chin. Sci. Abstr., 6, 2, 183-184 (2000)
[7] Deng, Z.; Zhang, P.; Qi, W.; Liu, J.; Gao, Y., Sequential covariance intersection fusion Kalman filter, Inf. Sci. (Ny), 189, 7, 293-309 (2012) · Zbl 1256.93105
[8] Hashmipour, H.; Roy, S.; Laub, A., Decentralized structures for parallel Kalman filtering, IEEE Trans. Automat. Control, 33, 1, 88-93 (1988) · Zbl 0644.93061
[9] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended kalman filter with intermittent observations, IEEE Trans. Autom. Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[10] Liu, Q.; Wang, Z.; He, X.; Zhou, D., Event-based recursive distributed filtering over wireless sensor networks, IEEE Trans. Autom. Control, 60, 9, 2470-2475 (2015) · Zbl 1360.93703
[11] Li, N.; Sun, S.; Ma, J., Multi-sensor distributed fusion filtering for networked systems with different delay and loss rates, Digital Signal Process., 34, 3, 29-38 (2014)
[12] Ligero, M.; Carazo, A.; Prez, J., Distributed fusion estimation in networked systems with uncertain observations and Markovian random delays, Signal Process., 106, 114-122 (2015)
[13] Noack, B.; Sijs, J.; Reinhardt, M.; Hanebeck, U. D., Decentralized data fusion with inverse covariance intersection, Automatica, 79, 35-41 (2017) · Zbl 1371.93195
[14] Sun, S.; Lin, H.; Ma, J.; Li, X., Multi-sensor distributed fusion estimation with applications in networked systems: a review paper, Inf. Fusion, 38, 122-134 (2017)
[15] Sun, S.; Deng, Z., Multi-sensor optimal information fusion Kalman filter, Automatica, 40, 1, 1017-1023 (2004) · Zbl 1075.93037
[16] Shuai, Z.; Zhang, H.; Wang, J.; Li, J.; Ouyang, M., Lateral motion control for four-wheel-independent-drive electric vehicles using optimal torque allocation and dynamic message priority scheduling, Control Eng. Pract., 24, 1, 55-66 (2014)
[17] Shuai, Z.; Zhang, H.; Wang, J.; Ouyang, M., Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays, IEEE Trans. Vehicular Technol., 63, 2, 591-602 (2014)
[18] Song, H.; Yu, L.; Zhang, W. A., \(H_∞\) filtering of network-based systems with random delay, Signal Process., 89, 615-622 (2009) · Zbl 1157.93529
[19] Shi, L.; Xie, L.; Murray, R., Kalman filtering over a packet-delaying network: a probabilistic approach, Automatica, 45, 9, 2134-2140 (2009) · Zbl 1175.93226
[20] Shi, D.; Chen, T.; Shi, L., Event-triggered maximum likelihood state estimation, Automatica, 50, 1, 247-254 (2014) · Zbl 1298.93322
[21] Trimpe, S.; D’Andrea, R., Event-based state estimation with variance-based triggering, IEEE Trans. Autom. Contr, 59, 12, 3266-3281 (2014) · Zbl 1360.93715
[22] Tan, H.; Shen, B.; Liu, Y.; Alsaedi, A.; Ahmad, B., Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises, Inf. Fusion, 36, 313-320 (2017)
[23] Wu, J.; Jia, Q.; Johansson, K.; Shi, L., Event-based sensor data scheduling: trade-off between communication rate and estimation quality, IEEE Trans. Autom. Control, 58, 4, 1041-1046 (2013) · Zbl 1369.90086
[24] Wang, Y.; Shen, H.; Karimi, H.; Duan, D., Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 26, 3, 1164-1176 (2017)
[25] Wang, Y.; Gao, Y.; Karimi, H.; Shen, H.; Fang, Z., Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit, IEEE Trans. Syst. Man Cybern., 48, 10, 1667-1675 (2018)
[26] Wang, Y.; Xia, Y.; Shen, H.; Zhou, P., SMC design for robust stabilization of nonlinear Markovian jump singular systems, IEEE Trans. Autom Control, 63, 1, 219-224 (2018) · Zbl 1390.93695
[27] Wei, Y.; Qiu, J.; Karimi, H., Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay, IEEE Trans. Fuzzy Syst., 26, 2, 504-517 (2018)
[28] Wei, Y.; Qiu, J.; Shi, P.; Chadli, M., Fixed-order piecewise-affine output feedback controller for fuzzy-affine-model-based nonlinear systems with time-varying delay, IEEE Trans. Circuits Syst. I, 64, 4, 945-958 (2017)
[29] Xiong, K.; Zhang, H.; Chan, C., Performance evaluation of UKF based nonlinear filtering, Automatica, 42, 2, 261-270 (2006) · Zbl 1103.93045
[30] Yuan, Y.; Wang, Z.; Guo, L., Distributed quantized multi-modal fusion filtering for two-scale systems, Inf. Sci. (Ny), 432, 572-583 (2018) · Zbl 1447.93359
[31] Yan, H.; Zhang, H.; Yang, F.; Zhan, X.; Peng, C., Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading, IEEE Trans. Neural Netw. Learn. Syst., 29, 8, 3588-3598 (2018)
[32] Yan, H.; Yang, Q.; Zhang, H.; Yang, F.; Zhan, X., Distributed \(H_∞\) state estimation for a class of filtering networks with time-varying switching topologies and packet losses, IEEE Trans. Syst. Man Cybern., 99, 1-11 (2017)
[33] Yang, X.; Zhang, W. A.; Chen, M. Z.Q.; Yu, L., Hybrid sequential fusion estimation for asynchronous sensor network-based target tracking, IEEE Trans. Control Syst. Technol., 25, 2, 669-676 (2017)
[34] Zhang, W. A.; Shi, L., Sequential fusion estimation for clustered sensor networks, Automatica, 89, 358-363 (2018) · Zbl 1388.93090
[35] Zhang, W. A.; Feng, G.; Yu, L., Multi-rate distributed fusion estimation for sensor networks with packet losses, Automatica, 48, 9, 2016-2028 (2012) · Zbl 1257.93095
[36] Zhang, H.; Zheng, X.; Yan, H.; Peng, C.; Wang, Z.; Chen, Q., Codesign of event-triggered and distributed \(H_∞\) filtering for active semi-vehicle suspension systems, IEEE/ASME Trans. Mechatron., 22, 2, 1047-1058 (2017)
[37] Zhang, H.; Shi, Y.; Wang, J.; Chen, H., A new delay-compensation scheme for networked control systems in controller area networks, IEEE Trans. Ind. Electron., 65, 9, 7239-7247 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.