×

Adaptive divided difference filtering for simultaneous state and parameter estimation. (English) Zbl 1184.93110

Summary: A novel adaptive version of the Divided Difference Filter (DDF) applicable to non-linear systems with a linear output equation is presented in this work. In order to make the filter robust to modeling errors, upper bounds on the state covariance matrix are derived. The parameters of this upper bound are then estimated using a combination of offline tuning and online optimization with a linear matrix inequality constraint, which ensures that the predicted output error covariance is larger than the observed output error covariance. The resulting sub-optimal, high-gain filter is applied to the problem of joint state and parameter estimation. Simulation results demonstrate the superior performance of the proposed filter as compared to the standard DDF.

MSC:

93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] Aoki, M., Optimization of Stochastic Systems: Topics in Discrete-Time Dynamics (1989), Academic Press: Academic Press San Diego, CA · Zbl 0699.93098
[2] Boutayeb, M.; Aubry, D., A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE Transactions on Automatic Control, 44, 8, 1550-1556 (1999) · Zbl 0957.93086
[3] Duan, Z.; Zhang, J.; Zhang, C.; Mosca, E., Robust \(H_2\) and \(H_\infty\) filtering for uncertain linear systems, Automatica, 42, 11, 1919-1926 (2006) · Zbl 1130.93422
[4] Elanayar, V. T., S.; Shin, Y. C., Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems, IEEE Transactions on Neural Networks, 5, 4, 594-603 (1994)
[5] Fu, M.; de Souza, C. E.; Luo, Z.-Q., Finite-horizon robust Kalman filter design, IEEE Transactions on Signal Processing, 49, 9, 2103-2112 (2001) · Zbl 1369.93625
[6] Geromel, J. C.; Oliveira, M. C., \(H_2\) and \(H_\infty\) robust filtering for convex bounded uncertain systems, IEEE Transactions on Automatic Control, 46, 1, 100-107 (2001) · Zbl 1056.93628
[7] Golub, G. H.; van Loan, C. F., Matrix Computations (1989), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore, MD · Zbl 0733.65016
[8] Julier, S. J.; Uhlmann, J. K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92, 3, 401-422 (2004)
[9] Lee, D.; Alfriend, K., Adaptive Sigma Point Filtering for State and Parameter Estimation, (Astrodynamics Specialist Conference and Exhibit (2004), Providence: Providence Rhode Island)
[10] Liang, Y.; An, D. X.; Zhou, D. H.; Pan, Q., A finite-horizon adaptive Kalman filter for linear systems with unknown disturbances, Signal Processing, 84, 2175-2194 (2004) · Zbl 1148.94362
[11] Ljung, L., Asymptotic behaviour of the extended Kalman filter as a parameter estimator for linear systems, IEEE Transactions on Automatic Control, AC-24, 36-50 (1979) · Zbl 0399.93054
[12] Mahmoud, M. S.; Xie, L. H.; Soh, Y. C., Robust Kalman filtering for discrete state-delay systems, IEE Proceedings Control Theory and Application, 147, 613-618 (2000)
[13] Mehra, R., K., Approaches to adaptive filtering, IEEE Transactions on Automatic Control, 15, 2, 175-184 (1972)
[14] Myers, K., A.; Tapley, B., D., Adaptive sequential estimation with unknown noise statistics, IEEE Transactions on Automatic Control, 21, 4, 520-523 (1976) · Zbl 0332.93071
[15] Norgaard, M.; Poulsen, N., K.; Ravn, O., New developments in state estimation for nonlinear systems, Automatica, 36, 1627-1638 (2000) · Zbl 0973.93050
[16] Ozbek, L.; Efe, M., An adaptive extended Kalman filter with application to compartment models, Communications in Statistics-Simulation and Computation, 33, 1, 145-158 (2004) · Zbl 1058.62107
[17] Quine, B. M., A derivative-free implementation of the extended Kalman filter, Automatica, 42, 11, 1927-1934 (2006) · Zbl 1130.93426
[18] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE Transactions on Automatic Control, 44, 4, 714-728 (1999) · Zbl 0967.93090
[19] Schei, T. S., A finite-difference method for linearization in nonlinear estimation algorithms, Automatica, 33, 11, 2051-2058 (1997) · Zbl 0916.93021
[20] Simon, D., Optimal State Estimation: Kalman, \(H\) Infinity, and Nonlinear Approaches (2006), John Wiley and Sons, Inc: John Wiley and Sons, Inc Hoboken, NJ
[21] van der Merwe, R, Wan, E, Julier, S, Bogdanov, A, Harvey, G, & Hunt, J. (2004). Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor Fusion: Applications to Integrated Navigation. In Proceedings of the AIAA guidance navigation and control conference; van der Merwe, R, Wan, E, Julier, S, Bogdanov, A, Harvey, G, & Hunt, J. (2004). Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor Fusion: Applications to Integrated Navigation. In Proceedings of the AIAA guidance navigation and control conference
[22] Xia, Q.; Rao, M.; Ying, Y.; Shen, X., Adaptive fading Kalman filter with an application, Automatica, 30, 8, 1333-1338 (1994) · Zbl 0825.93812
[23] Xie, L.; Lu, L.; Zhang, D.; Zhang, H., Improved robust \(H_2\) and \(H_\infty\) filtering for uncertain discrete-time systems, Automatica, 30, 8, 873-880 (2004) · Zbl 1050.93072
[24] Xiong, K.; Zhang, H. Y.; Chan, C. W., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 261-270 (2006) · Zbl 1103.93045
[25] Yang, F.; Wang, Z.; Hung, Y. S., Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises, IEEE Transactions on Automatic Control, 47, 7, 1179-1183 (2002) · Zbl 1364.93817
[26] Yoon, M. G.; Ugrinovskii, V. A.; Petersen, I. R., Robust finite horizon minimax filtering for discrete-time stochastic uncertain systems, Systems and Control Letters, 52, 2, 99-112 (2004) · Zbl 1157.93531
[27] Zhou, D., H.; Frank, P., M., Fault diagnostics and fault tolerant control, IEEE Transactions on Aerospace and Electronic Systems, 34, 2, 420-427 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.