×

On stability of a class of filters for nonlinear stochastic systems. (English) Zbl 1448.37061

Authors’ abstract: This article develops a comprehensive framework for stability analysis of a broad class of commonly used continuous- and discrete-time filters for stochastic dynamic systems with nonlinear state dynamics and linear measurements under certain strong assumptions. The class of filters encompasses the extended and unscented Kalman filters and most other Gaussian assumed density filters and their numerical integration approximations. The stability results are in the form of time-uniform mean square bounds and exponential concentration inequalities for the filtering error. In contrast to existing results, it is not always necessary for the model to be exponentially stable or fully observed. We review three classes of models that can be rigorously shown to satisfy the stringent assumptions of the stability theorems. Numerical experiments using synthetic data validate the derived error bounds.

MSC:

37H30 Stability theory for random and stochastic dynamical systems
37N35 Dynamical systems in control
60G35 Signal detection and filtering (aspects of stochastic processes)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
93B05 Controllability
93B07 Observability
93D20 Asymptotic stability in control theory
93E15 Stochastic stability in control theory

References:

[1] B. D. O. Anderson and J. B. Moore, Detectability and stabilizability of time-varying discrete-time linear systems, SIAM J. Control Optim., 19 (1981), pp. 20-32. · Zbl 0468.93051
[2] R. Atar and O. Zeitouni, Exponential stability for nonlinear filtering, Ann. Inst. Henri Poincaré Prob. Stat., 33 (1997), pp. 697-725. · Zbl 0888.93057
[3] J. S. Baras, A. Bensoussan, and M. R. James, Dynamic observers as asymptotic limits of recursive filters: Special cases, SIAM J. Appl. Math., 48 (1988), pp. 1147-1158. · Zbl 0658.93017
[4] A. Barrau and S. Bonnabel, The invariant extended Kalman filter as a stable observer, IEEE Trans. Automat. Control, 62 (2017), pp. 1797-1812. · Zbl 1366.93069
[5] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, 2nd ed., Princeton University Press, Princeton, NJ, 2009. · Zbl 1183.15001
[6] A. N. Bishop and P. Del Moral, On the stability of Kalman-Bucy diffusion processes, SIAM J. Control Optim., 55 (2017), pp. 4015-4047. · Zbl 1390.60151
[7] A. N. Bishop and P. Jensfelt, A stochastically stable solution to the problem of robocentric mapping, in Proceedings of the 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 1615-1622.
[8] S. Bolognani, L. Tubiana, and M. Zigliotto, Extended Kalman filter tuning in sensorless PMSM drives, IEEE Trans. Industry Appl., 39 (2003), pp. 1741-1747.
[9] S. Bonnabel and J.-J. Slotine, A contraction theory-based analysis of the stability of the deterministic extended Kalman filter, IEEE Trans. Automat. Control, 60 (2015), pp. 565-569. · Zbl 1360.93688
[10] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, New York, 2013. · Zbl 1279.60005
[11] M. Boutayeb, H. Rafaralahy, and M. Darouach, Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems, IEEE Trans. Automat. Control, 42 (1997), pp. 581-586. · Zbl 0876.93089
[12] R. S. Bucy, Global theory of the Riccati equation, J. Comput. System Sci., 1 (1967), pp. 349-361. · Zbl 0155.14403
[13] A. Budhiraja and D. Ocone, Exponential stability in discrete-time filtering for non-ergodic signals, Stochastic Process. Appl., 82 (1999), pp. 245-257. · Zbl 1056.93065
[14] F. M. Callier and J. Winkin, Convergence of the time-invariant Riccati differential equation towards its strong solution for stabilizable systems, J. Math. Anal. Appl., 192 (1995), pp. 230-257. · Zbl 0824.93023
[15] G. De Nicolao and M. Gevers, Difference and differential Riccati equations: A note on the convergence to the strong solution, IEEE Trans. Automat. Control, 37 (1992), pp. 1055-1057. · Zbl 0767.93080
[16] J. de Wiljes, S. Reich, and W. Stannat, Long-time stability and accuracy of the ensemble Kalman-Bucy filter for fully observed processes and small measurement noise, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1152-1181. · Zbl 1391.93265
[17] P. Del Moral, Mean Field Simulation for Monte Carlo Integration, Chapman & Hall/CRC Monogr. Stat. Appl. Probab. 153, CRC Press, Boca Raton, FL, 2013. · Zbl 1282.65011
[18] P. Del Moral, A. Kurtzmann, and J. Tugaut, On the stability and the uniform propagation of chaos of a class of extended ensemble Kalman-Bucy filters, SIAM J. Control Optim., 55 (2017), pp. 119-155. · Zbl 1356.60065
[19] P. Del Moral, A. Kurtzmann, and J. Tugaut, On the stability and the concentration of extended Kalman-Bucy filters, Electron. J. Probab., 23 (2018). · Zbl 1401.93199
[20] P. Del Moral and J. Tugaut, On the stability and the uniform propagation of chaos properties of ensemble Kalman-Bucy filters, Ann. Appl. Probab., 28 (2018), pp. 790-850. · Zbl 1391.60082
[21] B. Delyon, A note on uniform observability, IEEE Trans. Automat. Control, 46 (2001), pp. 1326-1327. · Zbl 1031.93047
[22] J. J. Deyst, Jr., and C. F. Price, Conditions for asymptotic stability of the discrete minimum-variance linear estimator, IEEE Trans. Automat. Control, 13 (1968), pp. 702-705.
[23] K. Ito and K. Xiong, Gaussian filters for nonlinear filtering problems, IEEE Trans. Automat. Control, 45 (2000), pp. 910-927. · Zbl 0976.93079
[24] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970. · Zbl 0203.50101
[25] S. J. Julier and J. K. Uhlmann, New extension of the Kalman filter to nonlinear systems, in Signal Processing, Sensor Fusion, and Target Recognition VI, Proc. SPIE 3068, SPIE, Bellingham, WA, 1997, pp. 182-194.
[26] T. Karvonen, S. Bonnabel, E. Moulines, and S. Särkkä, Bounds on the error covariance of a class of Kalman-Bucy filters for systems with non-linear dynamics, in Proceedings of the 57th IEEE Conference on Decision and Control, 2018, pp. 7176-7181.
[27] T. Karvonen and S. Särkkä, Fourier-Hermite series for stochastic stability analysis of non-linear Kalman filters, in Proceedings of the 19th International Conference on Information Fusion, 2016, pp. 1829-1836.
[28] D. T. B. Kelly, K. J. H. Law, and A. M. Stuart, Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity, 27 (2014), pp. 2579-2603. · Zbl 1305.62323
[29] E. Köksal Babacan, L. Özbek, and M. Efe, Stability of the extended Kalman filter when the states are constrained, IEEE Trans. Automat. Control, 53 (2008), pp. 2707-2711. · Zbl 1367.93638
[30] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Stoch. Model. Appl. Probab. 23, Springer-Verlag, Berlin, 1992. · Zbl 0752.60043
[31] S. Kluge, K. Reif, and M. Brokate, Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Trans. Automat. Control, 55 (2010), pp. 514-518. · Zbl 1368.93717
[32] A. J. Krener, The Convergence of the Extended Kalman Filter, Lecture Notes in Control and Inform. Sci. 286, Springer, Cham, 2003, pp. 173-182. · Zbl 1041.93053
[33] L. Li and Y. Xia, Stochastic stability of the unscented Kalman filter with intermittent observations, Automatica, 48 (2012), pp. 978-981. · Zbl 1246.93121
[34] J. P. Maree, L. Imsland, and J. Jouffroy, On convergence of the unscented Kalman-Bucy filter using contraction theory, Internat. J. Systems Sci., 47 (2016), pp. 1816-1827. · Zbl 1333.93243
[35] J. Prüher and O. Straka, Gaussian process quadrature moment transform, IEEE Trans. Automat. Control, 63 (2018), pp. 2844-2854. · Zbl 1426.62094
[36] K. Rapp, Nonlinear Estimation and Control in the Iron Ore Pelletizing Process: An Application and Analysis of the Extended Kalman Filter, Ph.D. thesis, Norwegian University of Science and Technology, 2004.
[37] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, Stochastic stability of the discrete-time extended Kalman filter, IEEE Trans. Automat. Control, 44 (1999), pp. 714-728. · Zbl 0967.93090
[38] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, Stochastic stability of the continuous-time extended Kalman filter, IEE Proc. Control Theory Appl., 147 (2000), pp. 45-52. · Zbl 0967.93090
[39] K. Reif, F. Sonnemann, and R. Unbehauen, Modification of the extended Kalman filter with an additive term of instability, in Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 4, 1996, pp. 4058-4059.
[40] K. Reif, F. Sonnemann, and R. Unbehauen, An EKF-based nonlinear observer with a prescribed degree of stability, Automatica, 34 (1998), pp. 1119-1123. · Zbl 0938.93504
[41] K. Reif and R. Unbehauen, The extended Kalman filter as an exponential observer for nonlinear systems, IEEE Trans. Signal Process., 47 (1999), pp. 2324-2328. · Zbl 0972.93071
[42] G. Söderlind, The logarithmic norm. History and modern theory, BIT, 46 (2006), pp. 631-652. · Zbl 1102.65088
[43] S. Särkkä, On unscented Kalman filtering for state estimation of continuous-time nonlinear systems, IEEE Trans. Automat. Control, 52 (2007), pp. 1631-1641. · Zbl 1366.93660
[44] S. Särkkä, Bayesian Filtering and Smoothing, Institute of Mathematical Statistics Textbooks, Cambridge University Press, Cambridge, UK, 2013. · Zbl 1274.62021
[45] S. Särkkä, J. Hartikainen, L. Svensson, and F. Sandblom, On the relation between Gaussian process quadratures and sigma-point methods, J. Adv. Inform. Fusion, 11 (2016), pp. 31-46.
[46] S. Särkkä and J. Sarmavuori, Gaussian filtering and smoothing for continuous-discrete dynamic systems, Signal Process., 93 (2013), pp. 500-510.
[47] T. Strom, On logarithmic norms, SIAM J. Numer. Anal., 12 (1975), pp. 741-753. · Zbl 0321.15012
[48] X. T. Tong, A. J. Majda, and D. Kelly, Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29 (2016), pp. 657-691. · Zbl 1334.60060
[49] W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. Control, 6 (1968), pp. 681-697. · Zbl 0182.20803
[50] Y. Wu, D. Hu, and X. Hu, Comments on “Performance evaluation of UKF-based nonlinear filtering”, Automatica, 43 (2007), pp. 567-568. · Zbl 1137.93417
[51] Y. Wu, D. Hu, M. Wu, and X. Hu, A numerical-integration perspective on Gaussian filters, IEEE Trans. Automat. Control, 54 (2006), pp. 2910-2921. · Zbl 1388.65025
[52] K. Xiong, C. W. Chan, and H. Zhang, Detection of satellite attitude sensor faults using the UKF, IEEE Trans. Aerospace Electron. Syst., 43 (2007), pp. 480-491.
[53] K. Xiong, L. D. Liu, and H. Zhang, Modified unscented Kalman filtering and its application in autonomous satellite navigation, Aerospace Sci. Technol., 13 (2009), pp. 238-246.
[54] K. Xiong, H. Zhang, and C. W. Chan, Performance evaluation of UKF-based nonlinear filtering, Automatica, 42 (2006), pp. 261-270. · Zbl 1103.93045
[55] K. Xiong, H. Zhang, and C. W. Chan, Author’s reply to Comments on Performance evaluation of UKF-based nonlinear filtering, Automatica, 43 (2007), pp. 569-570. · Zbl 1137.93418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.