×

Constrained fault-tolerant control for hypersonic vehicle subject to actuator failure and with unmeasurable states. (English) Zbl 1483.93094

Summary: In this article, a novel constrained fault-tolerant control (FTC) scheme is proposed to solve the attitude tracking control problem of the hypersonic vehicle (HSV) subject to multiple constraints, actuator faults, and disturbances. The reentry model of HSV with state constraints and the fault model of aerodynamic surface considering surface deflection constraints are constructed firstly. The adaptive robust unscented Kalman filter (ARUKF)-based estimation algorithm is designed, which can quickly estimate state variables, stuck faults, partial loss of effectiveness (PLOE) faults, and disturbances at the same time. By utilising the improved model predictive static programming (MPSP) technique, the complexity of processing multiple constraints and the computation are significantly reduced. Moreover, the closed-loop control system stability of HSV is analysed and the simulation results under two fault cases are given to demonstrate the effectiveness of the presented FTC scheme.

MSC:

93B35 Sensitivity (robustness)
93C40 Adaptive control/observation systems
93E11 Filtering in stochastic control theory
93B45 Model predictive control
Full Text: DOI

References:

[1] An, H.; Liu, J.; Wang, C., Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle, IEEE/ASME Transactions on Mechatronics, 21, 3, 1680-1691 (2016) · doi:10.1109/TMECH.2015.2507186
[2] An, H.; Wu, Q., Disturbance rejection dynamic inverse control of air-breathing hypersonic vehicles, Acta Astronautica, 151, 348-356 (2018) · doi:10.1016/j.actaastro.2018.06.022
[3] Asl, R. M.; Hagh, Y. S.; Simani, S.; Handroos, H., Adaptive square-root unscented Kalman filter: An experimental study of hydraulic actuator state estimation, Mechanical Systems and Signal Processing, 132, 670-691 (2019) · doi:10.1016/j.ymssp.2019.07.021
[4] Bonyan Khamseh, H.; Ghorbani, S.; Janabi-Sharifi, F., Unscented Kalman filter state estimation for manipulating unmanned aerial vehicles, Aerospace Science and Technology, 92, 446-463 (2019) · doi:10.1016/j.ast.2019.06.009
[5] Boutayeb, M.; Aubry, D., A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE Transactions on Automatic Control, 44, 8, 1550-1555 (1999) · Zbl 0957.93086 · doi:10.1109/9.780419
[6] Bu, X.; Wu, X.; Huang, J.; Wei, D., A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles, Nonlinear Dynamics, 84, 2175-2194 (2016) · Zbl 1355.93126 · doi:10.1007/s11071-016-2637-0
[7] Chen, H., Model predictive control (2003), Science Press
[8] Chen, J.; Du, N.; Han, Y., Decoupling attitude control of a hypersonic glide vehicle based on a nonlinear extended state observer, International Journal of Aerospace Engineering, 2020 (2020) · doi:10.1155/2020.4905698
[9] Cui, T.; Ding, F.; Alsaedi, A.; Hayat, T., Data filtering-based parameter and state estimation algorithms for state-space systems disturbed by coloured noises, International Journal of Systems Science, 51, 9, 1669-1684 (2020) · Zbl 1483.93621 · doi:10.1080/00207721.2020.1772403
[10] Deng, Z.; Yin, L.; Huo, B.; Xia, Y., Adaptive robust unscented Kalman filter via fading factor and maximum correntropy criterion, Sensors, 18, 8, 2406-2422 (2018) · doi:10.3390/s18082406
[11] Dong, C.; Liu, Y.; Wang, Q., Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints, ISA Transactions, 96, 163-176 (2020) · doi:10.1016/j.isatra.2019.06.011
[12] Fiorentini, L.; Serrani, A., Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model, Automatica, 48, 1248-1261 (2012) · Zbl 1246.93035 · doi:10.1016/j.automatica.2012.04.006
[13] Gao, M.; Yao, J., Finite-time \(####\) adaptive attitude fault-tolerant control for reentry vehicle involving control delay, Aerospace Science and Technology, 79, 246-254 (2018) · doi:10.1016/j.ast.2018.05.041
[14] Guo, Z.; Guo, J.; Zhou, J., Adaptive attitude tracking control for hypersonic reentry vehicles via sliding mode-based coupling effect-triggered approach, Aerospace Science and Technology, 78, 228-240 (2018) · doi:10.1016/j.ast.2018.04.017
[15] Guo, Z.; Ma, Q.; Guo, J.; Zhao, B.; Zhou, J., Performance-involved coupling effect-triggered scheme for robust attitude control of HRV, IEEE/ASME Transactions on Mechatronics, 25, 3, 1288-1298 (2020) · doi:10.1109/TMECH.2020.2973708
[16] Guo, J.; Peng, Q.; Zhou, J., Disturbance observer-based nonlinear model predictive control for air-breathing hypersonic vehicles, Journal of Aerospace Engineering, 32, 1, 1-13 (2019) · doi:10.1061/(ASCE)AS.1943-5525.0000948
[17] Halbe, O.; Raja, R. G.; Padhi, R., Robust reentry guidance of a reusable launch vehicle using model predictive static programming, Journal of Guidance Control and Dynamics, 37, 1, 134-148 (2014) · doi:10.2514/1.61615
[18] Hu, X.; Karimi, H. R.; Wu, L.; Guo, Y., Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles, IET Control Theory and Applications, 8, 13, 1147-1153 (2014) · doi:10.1049/cth2.v8.13
[19] Hu, C.; Yang, N.; Ren, Y., Polytopic linear parameter varying model-based tube model predictive control for hypersonic vehicles, International Journal of Advanced Robotic Systems, 14, 3 (2017) · doi:10.1177/1729881417714398
[20] Ishihara, S., & Yamakita, M. (2016). Adaptive robust UKF for nonlinear systems with parameter uncertainties. In Conference of the IEEE industrial electronics society (pp. 48-53). IEEE.
[21] Julier, S. J.; Uhlman, J. K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92, 3, 401-422 (2004) · doi:10.1109/JPROC.2003.823141
[22] Julier, S. J., Uhlmann, J. K., & Durrant-Whyte, H. F. (1995). A new approach for filtering nonlinear systems. In American control conference (pp. 1628-1632). IEEE.
[23] Khalil, H. K., Nonlinear systems (1992), Macmillan Publishing Company · Zbl 0969.34001
[24] Kumar, P.; Anoohya, B. B.; Padhi, R., Model predictive static programming for optimal command tracking: A fast model predictive control paradigm, Journal of Dynamic Systems Measurement and Control, 141, 1-12 (2019) · doi:10.1115/1.4041356
[25] Liu, K.; Hou, Z.; She, Z.; Guo, J., Reentry attitude tracking control for hypersonic vehicle with reaction control systems via improved model predictive control approach, Computer Modeling in Engineering and Sciences, 122, 1, 131-148 (2020) · doi:10.32604/cmes.2020.08124
[26] Ma, Y.; Cai, Y., Scheduled composite off-line output feedback model predictive control for a constrained hypersonic vehicle using polyhedral invariant sets, Journal of Aerospace Engineering, 31, 4, 1-15 (2018) · doi:10.1061/(ASCE)AS.1943-5525.0000856
[27] Mehrjouyan, A.; Alfi, A., Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case, Applied Ocean Research, 87, 223-232 (2019) · doi:10.1016/j.apor.2019.01.034
[28] Meng, Y.; Jiang, B.; Qi, R.; Liu, J., Fault-tolerant anti-windup control for hypersonic vehicles in reentry based on ISMDO, Journal of the Franklin Institute, 355, 5, 2067-2090 (2017) · Zbl 1393.93028 · doi:10.1016/j.jfranklin.2017.12.004
[29] Meng, Y.; Jiang, B.; Qi, R.; Liu, J., Adaptive fault-tolerant attitude tracking control of hypersonic vehicle subject to unexpected centroid-shift and state constraints, Aerospace Science and Technology, 95 (2019) · doi:10.1016/j.ast.2019.105515
[30] Mondal, S.; Padhi, R., Angle-constrained terminal guidance using quasi-spectral model predictive static programming, Journal of Guidance Control and Dynamics, 41, 3, 783-791 (2018) · doi:10.2514/1.G002893
[31] Niu, J.; Chen, F.; Tao, G., Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncertainty and actuator fault, Nonlinear Dynamics, 92, 1299-1315 (2018) · Zbl 1398.93247 · doi:10.1007/s11071-018-4127-z
[32] Oza, H. B.; Padhi, R., Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles, Journal of Guidance Control and Dynamics, 35, 1, 153-164 (2012) · doi:10.2514/1.53647
[33] Padhi, R.; Kothari, M., Model predictive static programming: A computationally efficient technique for suboptimal control design, International Journal of Innovative Computing Information and Control, 5, 2, 399-411 (2009)
[34] Parker, J. T.; Serrani, A.; Yurkovich, S.; Bolender, M. A.; Doman, D. B., Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30, 3, 856-869 (2007) · doi:10.2514/1.27830
[35] Potts, R. L., Application of integral methods to ablation charring erosion. A review, Journal of Spacecraft and Rockets, 32, 2, 200-209 (1995) · doi:10.2514/3.26597
[36] Qin, W.; He, B.; Liu, G.; Zhao, P., Robust model predictive tracking control of hypersonic vehicles in the presence of actuator constraints and input delays, Journal of the Franklin Institute, 353, 17, 4351-4367 (2016) · Zbl 1349.93126 · doi:10.1016/j.jfranklin.2016.08.007
[37] Rahimi, A.; Kumar, K. D.; Alighanbari, H., Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter, Acta Astronautica, 134, 159-169 (2017) · doi:10.1016/j.actaastro.2017.02.003
[38] Shao, X.; Wang, H., Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties, ISA Transactions, 54, 27-38 (2015) · doi:10.1016/j.isatra.2014.06.010
[39] Shi, Y.; Shao, X.; Zhang, W., Quantized learning control for flexible air-breathing hypersonic vehicle with limited actuator bandwidth and prescribed performance, Aerospace Science and Technology, 97 (2020) · doi:10.1016/j.ast.2019.105629
[40] Shtessel, Y., McDuffie, J., Jackson, M., Hall, C., Gallaher, M., & Krupp, D. (1998). Sliding mode control of the X-33 vehicle in launch and re-entry modes. In AIAA guidance, navigation, and control conference and exhibit (pp. 1352-1362).
[41] Singh, V.; Pal, B.; Jain, T., Integrated methodology for state and parameter estimation of spark-ignition engines, International Journal of Systems Science (2021) · Zbl 1483.93631 · doi:10.1080/00207721.2021.1888166
[42] Sun, J.; Li, C.; Guo, Y.; Wang, C.; Li, P., Adaptive fault tolerant control for hypersonic vehicle with input saturation and state constraints, Acta Astronautica, 167, 302-313 (2020) · doi:10.1016/j.actaastro.2019.07.041
[43] Sun, J.; Song, S.; Wu, G., Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54, 6, 1-13 (2017) · doi:10.2514/1.A33890
[44] Tang, W.; Long, W.; Gao, H., Model predictive control of hypersonic vehicles accommodating constraints, IET Control Theory and Applications, 11, 15, 2599-2606 (2017) · doi:10.1049/cth2.v11.15
[45] Tang, X.; Zhai, D.; Li, X., Adaptive fault-tolerance control based finite-time backstepping for hypersonic flight vehicle with full state constrains, Information Sciences, 507, 53-66 (2020) · Zbl 1461.93266 · doi:10.1016/j.ins.2019.08.012
[46] Tao, X.; Li, N.; Li, S., Multiple model predictive control for large envelope flight of hypersonic vehicle systems, Information Sciences, 328, 115-126 (2016) · Zbl 1386.93122 · doi:10.1016/j.ins.2015.08.033
[47] Uhlman, J. K., Algorithm for multiple target tracking, American Scientist, 80, 2, 128-141 (1992) · doi:https://doi.org/http://www.jstor.org/stable/29774599
[48] Wang, Y.; Chen, M.; Wu, Q.; Zhang, J., Fuzzy adaptive non-affine attitude tracking control for a generic hypersonic flight vehicle, Aerospace Science and Technology, 80, 56-66 (2018) · doi:10.1016/j.ast.2018.06.033
[49] Wang, J.; Pei, H.; Wang, N., Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment, Acta Aeronautica et Astronautica Sinica, 35, 1, 80-89 (2014) · doi:10.3724/SP.J.1006.2014.00080
[50] Wang, Y.; Sun, S.; Li, L., Adaptively robust unscented Kalman filter for tracking a maneuvering vehicle, Journal of Guidance, Control, and Dynamics, 37, 5, 1696-1701 (2014) · doi:10.2514/1.G000257
[51] Xiao, M.; Zhang, Y.; Fu, H., Three-stage unscented Kalman filter for state and fault estimation of nonlinear system with unknown input, Journal of the Franklin Institute, 354, 8421-8443 (2017) · Zbl 1380.93262 · doi:10.1016/j.jfranklin.2017.09.031
[52] Xiong, K.; Zhang, H.; Chan, C., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 261-270 (2006) · Zbl 1103.93045 · doi:10.1016/j.automatica.2005.10.004
[53] Xue, Z.; Zhang, Y.; Cheng, C.; Ma, G., Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression, Neurocomputing, 376, 1, 95-102 (2019) · doi:10.1016/j.neucom.2019.09.074
[54] Yin, X.; Wang, B.; Liu, L.; Wang, Y., Disturbance observer-based gain adaptation high-order sliding mode control of hypersonic vehicles, Aerospace Science and Technology, 89, 19-30 (2019) · doi:10.1016/j.ast.2019.03.030
[55] Yu, Y.; Wang, H.; Li, N., Fault-tolerant control for over-actuated hypersonic reentry vehicle subject to multiple disturbances and actuator faults, Aerospace Science and Technology, 87, 230-243 (2019) · doi:10.1016/j.ast.2019.02.024
[56] Zhai, R.; Qi, R.; Zhang, J., Adaptive sliding mode fault-tolerant control for hypersonic vehicle based on radial basis function neural networks, International Journal of Advanced Robotic Systems, 14, 3 (2017) · doi:10.1177/1729881416673783
[57] Zhai, R.; Qi, R.; Zhang, J., Compound fault-tolerant attitude control for hypersonic vehicle with reaction control systems in reentry phase, ISA Transactions, 90, 123-137 (2019) · doi:10.1016/j.isatra.2019.01.005
[58] Zhang, X.; Chen, K.; Fu, W.; Huang, H., Neural network-based stochastic adaptive attitude control for generic hypersonic vehicles with full state constraints, Neurocomputing, 351, 228-239 (2019) · doi:10.1016/j.neucom.2019.04.014
[59] Zhang, S.; Wang, Q.; Yang, G.; Zhang, M., Anti-disturbance backstepping control for air-breathing hypersonic vehicles based on extended state observer, ISA Transactions, 92, 84-93 (2019) · doi:10.1016/j.isatra.2019.02.017
[60] Zhang, Y.; Xiao, M.; Wang, Z.; Fu, H.; Wu, Y., Robust three-stage unscented Kalman filter for Mars entry phase navigation, Information Fusion, 51, 67-75 (2019) · doi:10.1016/j.inffus.2018.11.003
[61] Zhou, W.; Hou, J., A new adaptive robust unscented Kalman filter for improving the accuracy of target tracking, IEEE Access, 7, 77476-77489 (2019) · doi:10.1109/Access.6287639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.