×

Recursive distributed fusion estimation for nonlinear stochastic systems with event-triggered feedback. (English) Zbl 1471.93178

Summary: This paper focus on the distributed fusion estimation problem for a multi-sensor nonlinear stochastic system by considering feedback fusion estimation with its variance. For any of the feedback channels, an event-triggered scheduling mechanism is developed to decide whether the fusion estimation is needed to broadcast to local sensors. Then event-triggered unscented Kalman filters are designed to provide local estimations for fusion. Further, a recursive distributed fusion estimation algorithm related with the trigger threshold is proposed, and sufficient conditions are built for boundedness of the fusion estimation error covariance. Moreover, an ideal compromise between fusion center-to-sensors communication rate and estimation performance is achieved. Finally, validity of the proposed method is confirmed by a numerical simulation.

MSC:

93C65 Discrete event control/observation systems
93B52 Feedback control
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Han, C., Multi-source Information Fusion (2006), Tsinghua University Press: Tsinghua University Press Beijing
[2] Thomopoulos, S.; Okello, N., Distributed and centralized multisensor detection with misaligned sensors, Inf. Sci., 77, 3-4, 293-323 (1994)
[3] Hong, L., Centralized and distributed multisensor integration with uncertainties in communication networks, IEEE Trans. Aerosp. Electron. Syst., 27, 2, 370-379 (1991)
[4] Ge, X.; Han, Q.; Zhong, M.; Zhang, X., Distributed Krein space-based attack detection over sensor networks under deception attacks, Automatica, 109, 108557 (2019) · Zbl 1429.93135
[5] Carlson, N. A., Federated square root filter for decentralized parallel processes, IEEE Trans. Aerosp. Electron. Syst., 26, 3, 517-525 (1990)
[6] Deng, Z.; Zhang, P.; Qia, W.; Liu, J.; Gao, Y., Sequential covariance intersection fusion Kalmanfilter, Inf. Sci., 189, 293-309 (2012) · Zbl 1256.93105
[7] Yan, L.; Li, X.; Xia, Y.; Fu, M., Optimal sequential and distributed fusion for state estimation in cross-correlated noise, Automatica, 49, 12, 3607-3612 (2013) · Zbl 1315.93079
[8] Liang, Y.; Dong, X.; Han, L.; Li, Q.; Ren, Z., Globally optimal distributed time-varying weight information filter of mobile sensor network, J. Frankl. Inst., 357, 11, 7308-7326 (2020) · Zbl 1455.94061
[9] Li, L.; Yu, D.; Xia, Y.; Yang, H., Stochastic stability of a modified unscented Kalmanfilter with stochastic nonlinearities and multiple fading measurements, J. Frankl. Inst., 354, 2, 650-667 (2017) · Zbl 1355.93205
[10] Lee, D., Nonlinear estimation and multiple sensor fusion using unscented information filtering, IEEE Signal Process. Lett., 15, 861-864 (2008)
[11] Li, W.; Jia, Y., Consensus-based distributed multiple model UKF for jump Markov nonlinear systems, IEEE Trans. Autom. Control, 57, 1, 227-233 (2012) · Zbl 1369.93637
[12] D, J.; Y, E., Distributed asynchronous multiple sensor fusion with nonlinear multiple models, Aerosp. Sci. Technol., 39, 692-704 (2014)
[13] Li, K.; Zhao, S.; Ahn, C. K.; Liu, F., State estimation for jump Markov nonlinear systems of unknown measurement data covariance, J. Frankl. Inst., 358, 2, 1673-1691 (2021) · Zbl 1458.93244
[14] Wang, J.; Alipouri, Y.; Huang, B., Dual neural extended Kalman filtering approach for multirate sensor data fusion, IEEE Trans. Instrum. Meas., 70, 1-9 (2021)
[15] Zhu, D.; Chen, B.; Hong, Z.; Yu, L., Networked nonlinear fusion estimation under dos attacks, IEEE Sens. J., 21, 5, 7058-7066 (2021)
[16] Zhu, Y.; You, Z.; Zhao, J., The optimality for the distributed Kalman filtering fusion with feedback, Automatica, 37, 9, 1489-1493 (2001) · Zbl 0989.93088
[17] You, H.; Wei, X., Relationship between track fusion solutions with and without feedback information, J. Syst. Eng. Electron., 39, 14, 47-51 (2003)
[18] Zhao, M.; Zhu, Z.; Shi, M., Soboptimal distributed Kalman filtering fusion with feedback, J. Syst. Eng. Electron., 16, 4, 746-749 (2005)
[19] Huang, M.; Dey, S., Dynamic quantizer design for hidden Markov state estimation via multiple sensors with fusion center feedback, IEEE Trans. Signal Process., 54, 8, 2887-2896 (2006) · Zbl 1373.94615
[20] Lin, H.; Sun, S., Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated noises, Automatica, 101, 128-137 (2019) · Zbl 1415.93250
[21] Sun, S., Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises, IEEE Trans. Signal Process., 68, 1064-1074 (2020) · Zbl 1543.93358
[22] Ge, X.; Han, Q.; Zhang, X.; Ding, L.; Yang, F., Distributed event-triggered estimation over sensor networks: a survey, IEEE Trans. Cybern., 50, 3, 1306-1320 (2020)
[23] Li, L.; Niu, M.; Yang, H.; Liu, Z., Event-triggered nonlinear filtering for networked systems with correlated noises, J. Frankl. Inst., 355, 13, 5811-5829 (2018) · Zbl 1451.93240
[24] Wu, J.; Jia, Q.-S.; Johansson, K. H.; Shi, L., Event-based sensor data scheduling: trade-off between communication rate and estimation quality, IEEE Trans. Autom. Control, 58, 4, 1041-1046 (2013) · Zbl 1369.90086
[25] Shi, D.; Chen, T.; Shi, L., An event-triggered approach to state estimation with multiple point- and set-valued measurements, Automatica, 50, 6, 1641-1648 (2014) · Zbl 1296.93187
[26] Li, L.; Yu, D.; Xia, Y., Remote nonlinear state estimation with stochastic event-triggered sensor schedule, IEEE Trans. Cybern., 49, 3, 734-745 (2019)
[27] Weerakkody, S.; Mo, Y.; Sinopoli, B.; Han, D.; Shi, L., Multisensor scheduling for state estimation with event-based, stochastic triggers, IEEE Trans. Autom. Control, 61, 9, 2695-2701 (2016) · Zbl 1359.90045
[28] Ge, X.; Han, Q.; Wang, Z., A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks, IEEE Trans. Cybern., 49, 1, 171-183 (2019)
[29] Zheng, X.; Fang, H., Recursive state estimation for discrete-time nonlinear systems with event-triggered data transmission, norm-bounded uncertainties and multiple missing measurements, Int. J. Robust Nonlinear Control, 26, 17, 3473-3495 (2016) · Zbl 1351.93150
[30] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Trans. Autom. Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[31] Li, L.; Xia, Y., Stochastic stability of the unscented Kalman filter with intermittent observations, Automatica, 48, 5, 978-981 (2012) · Zbl 1246.93121
[32] Li, L.; Xia, Y., Unscented Kalman filter over unreliable communication networks with Markovian packet dropouts, IEEE Trans. Autom. Control, 58, 12, 3224-3230 (2013)
[33] Miyabayashi, K.; Tonomura, O.; Kano, M.; Hasebe, S., Comparative study of state estimation of tubular microreactors using UKF and EKF, IFAC Proc. Vol., 45, 15, 513-518 (2012)
[34] Wu, Y.; Pan, Y.; Chen, M.; Li, H., Quantized adaptive finite-time bipartite NN tracking control for stochastic multiagent systems, IEEE Trans. Cybern., 1-12 (2020)
[35] Li, H.; Wu, Y.; Chen, M., Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm, IEEE Trans. Cybern., 51, 3, 1163-1174 (2021)
[36] Tong, S.; Li, Y.; Liu, Y., Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains, IEEE Trans. Neural Netw. Learn. Syst., 32, 4, 1575-1585 (2021)
[37] Tong, S.; Min, X.; Li, Y., Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybern., 50, 9, 3903-3913 (2020)
[38] Li, L.; Yu, D.; Xia, Y.; Yang, H., Event-triggered UKF for nonlinear dynamic systems with packet dropout, Int. J. Robust Nonlinear Control, 27, 18, 4208-4226 (2017) · Zbl 1379.93092
[39] Zhang, S.; Hao, Y.; Wu, X., Complexity analysis of three deterministic sampling nonlinear filtering algorithms, J. Harbin Inst. Technol., 45, 12, 111-115 (2013) · Zbl 1313.93194
[40] Xiong, K.; Zhang, H.; Chan, C., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 2, 261-270 (2006) · Zbl 1103.93045
[41] Liu, Q.; Wang, Z.; He, X.; Zhou, D., On Kalman-consensus filtering with random link failures over sensor networks, IEEE Trans. Autom. Control, 63, 8, 2701-2708 (2018) · Zbl 1423.93384
[42] Wang, S.; Lyu, Y.; Ren, W., Unscented-transformation-based distributed nonlinear state estimation: algorithm,analysis, and experiments, IEEE Trans. Control Syst. Technol., 27, 5, 2016-2029 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.