×

Event-based state and fault estimation for stochastic nonlinear system with Markov packet dropout. (English) Zbl 1481.93129

Summary: This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.

MSC:

93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory
93C65 Discrete event control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Edwards, C.; Spurgeon, S. K.; Patton, R. J., Sliding mode observers for fault detection and isolation, Automatica, 36, 4, 541-553 (2000) · Zbl 0968.93502
[2] Lee, D.; Park, Y.; Park, Y., Robust \(h_\infty\) sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems, IEEE Trans. Autom. Control, 57, 11, 2928-2934 (2012) · Zbl 1369.93126
[3] Jiang, B.; Staroswiecki, M.; Cocquempot, V., Fault accommodation for nonlinear dynamic systems, IEEE Trans. Autom. Control, 51, 9, 1578-1583 (2006) · Zbl 1366.93694
[4] Gao, Z.; Ding, S. X., Brief paper: actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems, Automatica, 43, 5, 912-920 (2007) · Zbl 1117.93019
[5] Gao, Z., Fault estimation and fault-tolerant control for discrete-time dynamic systems, IEEE Trans. Ind. Electron., 62, 6, 3874-3884 (2015)
[6] Kalsi, K.; Lian, J.; Hui, S.; ak, S. H., Brief paper: sliding-mode observers for systems with unknown inputs: a high-gain approach, Automatica, 46, 2, 347-353 (2010) · Zbl 1205.93028
[7] Boizot, N.; Busvelle, E.; Gauthier, J., Brief paper: an adaptive high-gain observer for nonlinear systems, Automatica, 46, 9, 1483-1488 (2010) · Zbl 1201.93122
[8] Martinez-Guerra, R.; Diop, S., Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and differential approach, IEE Proc. - Control Theory Appl., 151, 1, 130-135 (2004)
[9] Lan, J.; Patton, R. J., A new strategy for integration of fault estimation within fault-tolerant control, Automatica, 69, 69, 48-59 (2016) · Zbl 1338.93129
[10] Hmida, F. B.; Khemiri, K.; Ragot, J.; Gossa, M., Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs, J. Frankl. Inst., 349, 7, 2369-2388 (2012) · Zbl 1287.93090
[11] Zhu, J.; Yang, G.; Wang, H.; Wang, F., Fault estimation for a class of nonlinear systems based on intermediate estimator, IEEE Trans. Autom. Control, 61, 9, 2518-2524 (2016) · Zbl 1359.93075
[12] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M. I.; Sastry, S., Kalman filtering with intermittent observations, IEEE Trans. Autom. Control, 49, 9, 1453-1464 (2004) · Zbl 1365.93512
[13] Liu, W.; Yu, K.; Tan, X.; Bu, X., State estimation for networked systems with Markovian communication constraints and multiple packet dropouts, J. Frank. Inst., 355, 2, 878-901 (2017) · Zbl 1384.93146
[14] Wang, Z.; Yang, F.; Ho, D. W.C.; Liu, X., Robust finite-horizon filtering for stochastic systems with missing measurements, IEEE Signal Process. Lett., 12, 6, 437-440 (2005)
[15] Mohamed, S.; Nahavandi, S., Robust finite-horizon Kalman filtering for uncertain discrete-time systems, IEEE Trans. Autom. Control, 57, 6, 1548-1552 (2012) · Zbl 1369.93644
[16] Liu, Q.; Wang, Z.; He, X.; Zhou, D., Event-based recursive distributed filtering over wireless sensor networks, IEEE Trans. Autom. Control, 60, 9, 2470-2475 (2015) · Zbl 1360.93703
[17] Wang, S.; Fang, H.; Tian, X., Event-based robust state estimator for linear time-varying system with uncertain observations and randomly occurring uncertainties, J. Frankl. Inst., 354, 3, 1403-1420 (2017) · Zbl 1355.93122
[18] Huang, M.; Dey, S., Stability of Kalman filtering with Markovian packet losses, Automatica, 43, 4, 598-607 (2007) · Zbl 1261.93083
[19] Li, L.; Xia, Y., Unscented Kalman filter over unreliable communication networks with Markovian packet dropouts, IEEE Trans. Autom. Control, 58, 12, 3224-3230 (2013)
[20] Yang, H.; Li, H.; Xia, Y.; Li, L., Nonuniform sampling Kalman filter for networked systems with Markovian packets dropout, J. Frankl. Inst., 355, 10, 4218-4240 (2018) · Zbl 1390.93812
[21] Miskowicz, M., Send-on-delta concept: an event-based data reporting strategy, Sensors, 6, 1, 49-63 (2006)
[22] Sijs, J.; Lazar, M., Event based state estimation with time synchronous updates, IEEE Trans. Autom. Control, 57, 10, 2650-2655 (2012) · Zbl 1369.93604
[23] Liu, Q.; Wang, Z.; He, X.; Zhou, D., Event-based distributed filtering with stochastic measurement fading, IEEE Trans. Ind. Inform., 11, 6, 1643-1652 (2015)
[24] Han, D.; Mo, Y.; Wu, J.; Weerakkody, S.; Sinopoli, B.; Shi, L., Stochastic event-triggered sensor schedule for remote state estimation, IEEE Trans. Autom. Control, 60 (2014)
[25] Shi, D.; Chen, T.; Darouach, M., Event-based state estimation of linear dynamic systems with unknown exogenous inputs, Automatica, 69, 69, 275-288 (2016) · Zbl 1338.93238
[26] Wang, X.; Fei, Z.; Wang, Z.; Liu, X., Event-triggered fault estimation and fault-tolerant control for networked control systems, J. Frankl. Inst., 356, 8, 4420-4441 (2019) · Zbl 1412.93087
[27] Ding, B.; Fang, H., Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression, ISA Trans., 68, 327-334 (2017)
[28] Liu, C., Stochastic Process and its Application (2004), Higher Education Press
[29] Hu, J.; Wang, Z.; Gao, H.; Stergioulas, L. K., Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements, Automatica, 48, 9, 2007-2015 (2012) · Zbl 1257.93099
[30] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Trans. Autom. Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[31] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE Trans. Autom. Control, 44, 4, 714-728 (1999) · Zbl 0967.93090
[32] Xiong, K.; Zhang, H. Y.; Chan, C. W., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 2, 261-270 (2006) · Zbl 1103.93045
[33] Li, L.; Niu, M.; Xia, Y.; Yang, H., Stochastic event-triggered distributed fusion estimation under jamming attacks, IEEE Trans. Signal Inf. Process. Netw., 7, 309-321 (2021)
[34] Cuenca; Antunes, D. J.; Castillo, A.; Garca, P.; Khashooei, B. A.; Heemels, W. P.M. H., Periodic event-triggered sampling and dual-rate control for a wireless networked control system with applications to UAVs, IEEE Trans. Ind. Electron., 66, 4, 3157-3166 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.