×

Characterization results on small blocking sets of the polar spaces \(Q^+(2n+1,2)\) and \(Q^+(2n+1,3)\). (English) Zbl 1122.51009

Summary: In [Des. Codes Cryptography 39, No. 3, 323–333 (2006; Zbl 1172.51302)], J. De Beule and L. Storme characterized the smallest blocking sets of the hyperbolic quadrics \(Q^+(2n+1,3)\), \(n \geq 4\); they proved that these blocking sets are truncated cones over the unique ovoid of \(Q^+(7,3)\). We continue this research by classifying all the minimal blocking sets of the hyperbolic quadrics \(Q^+(2n+1,3)\), \(n \geq 3\), of size at most \(3^n + 3^{n-2}\). This means that the three smallest minimal blocking sets of \(Q^+(2n+1,3)\), \(n \geq 3\), are now classified. We present similar results for \(q = 2\) by classifying the minimal blocking sets of \(Q^+(2n+1,2)\), \(n \geq 3\), of size at most \(2^n + 2^{n-2}\). This means that the two smallest minimal blocking sets of \(Q^+(2n+1,2)\), \(n \geq 3\), are classified.

MSC:

51E21 Blocking sets, ovals, \(k\)-arcs
05B25 Combinatorial aspects of finite geometries
51D20 Combinatorial geometries and geometric closure systems
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)

Citations:

Zbl 1172.51302

Software:

GAP
Full Text: DOI

References:

[1] Blokhuis A and Moorhouse GE (1995). Some p-ranks related to orthogonal spaces. J Algebr Comb 4(4): 295–316 · Zbl 0843.51011 · doi:10.1023/A:1022477715988
[2] Bose RC and Burton RC (1966). A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J Comb Theory 1: 96–104 · Zbl 0152.18106 · doi:10.1016/S0021-9800(66)80007-8
[3] De Beule J, Klein A, Metsch K, Storme L (2007) Partial ovoids and partial spreads in hermitian polar spaces. Des Codes Cryptogr. doi: 10.1007/s10623-007-9047-8 · Zbl 1185.05029
[4] De Beule J and Metsch K (2004). Small point sets that meet all generators of Q(2n, p), p > 3 prime. J Comb Theory Ser A 106(2): 327–333 · Zbl 1052.51005 · doi:10.1016/j.jcta.2004.02.001
[5] De Beule J and Metsch K (2005). The smallest point sets that meet all generators of H(2n, q 2). Discrete Math 294(1–2): 75–81 · Zbl 1072.51004 · doi:10.1016/j.disc.2004.04.037
[6] De Beule J and Storme L (2003). The smallest minimal blocking sets of Q(6, q), q even. J Comb Des 11(4): 290–303 · Zbl 1038.51010 · doi:10.1002/jcd.10048
[7] De Beule J and Storme L (2005). On the smallest minimal blocking sets of Q(2n, q), for q an odd prime. Discrete Math 294(1–2): 83–107 · Zbl 1075.51001 · doi:10.1016/j.disc.2004.04.038
[8] De Beule J and Storme L (2006). Blocking all generators of Q +(2n + 1, 3), n 4. Des Codes Cryptogr 39(3): 323–333 · Zbl 1172.51302 · doi:10.1007/s10623-005-5034-0
[9] Ebert GL and Hirschfeld JWP (1999). Complete systems of lines on a Hermitian surface over a finite field. Des Codes Cryptogr 17(1–3): 253–268 · Zbl 0952.51007 · doi:10.1023/A:1026439528939
[10] The GAP Group (2006) GAP–Groups, algorithms, and programming, Version 4.4.9
[11] Kantor WM (1982). Ovoids and translation planes. Can J Math 34(5): 1195–1207 · doi:10.4153/CJM-1982-082-0
[12] Kantor WM (1982). Spreads, translation planes and Kerdock sets. I. SIAM J Algebr Discrete Methods 3(2): 151–165 · Zbl 0493.51008 · doi:10.1137/0603015
[13] Metsch K (2002) Blocking sets in projective spaces and polar spaces. J Geom 76(1–2):216–232. Combinatorics, 2002 (Maratea) · Zbl 1032.51010
[14] Metsch K (2004). Small point sets that meet all generators of W(2n + 1, q). Des Codes Cryptogr 31(3): 283–288 · Zbl 1052.51007 · doi:10.1023/B:DESI.0000015888.27935.e2
[15] Shult E (1989). Nonexistence of ovoids in {\(\Omega\)}+(10, 3). J Comb Theory Ser A 51(2): 250–257 · Zbl 0683.51004 · doi:10.1016/0097-3165(89)90050-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.