×

Dynamical noncommutativity and noether theorem in twisted \({\phi^{\star 4}}\) theory. (English) Zbl 1170.53073

The authors propose a generalization of the usual \(*\)-Moyal product in order to consider a noncommutative charged scalar field theory. This generalized Moyal product presents many advantages with respect to the usual one. First of all it is of dynamic nature, and does not produce anomaly on the shell for the energy-momentum tensor, (i.e., \(T^{\alpha\beta}_{/\beta}=0\)). Furthermore, it allows to obtain a noncommutative Noether theorem, similar to the classic field theory.
Remark. The non-commutative product, considered in this beautiful paper, can be considered a serious improvement with respect to usual rigid \(*\)-products introduced under the philosophy that wants to see quantized field theories like (Moyal) deformed classical ones. However, it is just this aspect that shows its limit. In fact, it insists on the general belief that in order to describe a quantum field theory it is necessary to perform a type of non-commutative product before. Instead, working in the geometric theory of quantum (super) PDE’s, one understands how to go beyond this obsolete point of view.

MSC:

53D55 Deformation quantization, star products
81T75 Noncommutative geometry methods in quantum field theory
70S10 Symmetries and conservation laws in mechanics of particles and systems

References:

[1] Dirac P.A.M.: The fundamental equations of quantum mechanics. Proc. R. Soc. Lond. A 109, 642 (1925) · JFM 51.0729.01 · doi:10.1098/rspa.1925.0150
[2] Dirac P.A.M.: On quantum algebra. Proc. Camb. Philos. Soc. 23, 412 (1926) · JFM 52.0975.02 · doi:10.1017/S0305004100015231
[3] Wolfgang, P.: Letter of Heisenberg to Peierls (1930). In: von Meyenn, K. (ed.) vol. II, 15. Springer, Heidelberg (1985)
[4] Snyder H.S.: Quantized space–time. Phys. Rev. 71, 38 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[5] Snyder H.S.: The electromagnetic field in quantized space–time. Phys. Rev. 72, 68 (1947) · Zbl 0041.33118 · doi:10.1103/PhysRev.72.68
[6] Connes A.: Non-commutative Geometry. Academic Press, London (1994) · Zbl 0818.46076
[7] Landi G.: An Introduction to Noncommutative Spaces and their Geometry. Springer, New York (1997); hep-th/9701078 · Zbl 0909.46060
[8] Madore J.: An Introduction to Noncommutative Differential Geometry and its Physical Applications, 2nd edn. Cambridge University Press, Cambridge (1999) · Zbl 0942.58014
[9] Castellani L.: Noncommutative geometry and physics: a review of selected recent results. Class. Quant. Grav. 17, 3377 (2000); [hep-th/0005210] · Zbl 1079.81539 · doi:10.1088/0264-9381/17/17/301
[10] Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001); [hep-th/0106048] · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[11] Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207 (2003); [hep-th/0109162] · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[12] Szabo R.J.: Symmetry, gravity and noncommutativity. Class. Quant. Grav. 23, R199–R242 (2006); [hep-th/0606233] · Zbl 1117.83001 · doi:10.1088/0264-9381/23/22/R01
[13] Aschieri P., Castellani L.: An introduction to noncommutative differential geometry on quantum groups. Int. J. Mod. Phys. A 8, 1667 (1993); [hep-th/9207084] · Zbl 0802.58007 · doi:10.1142/S0217751X93000692
[14] Castellani L.: U q (N) Gauge theories. Mod. Phys. Lett. A 9, 2835 (1994); [hep-th/9212141] · Zbl 1021.81563 · doi:10.1142/S0217732394002689
[15] Castellani L.: Differential calculus on ISO q (N), quantum Poincaré algebra and q-gravity. Commun. Math. Phys. 171, 383 (1995); [hep-th/9312179] · Zbl 0848.58004 · doi:10.1007/BF02099276
[16] Castellani L.: The Lagrangian of q-Poincaré gravity. Phys. Lett. B 327, 22 (1994); [hep-th/9402033] · doi:10.1016/0370-2693(94)91522-9
[17] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J.: A gravity theory on noncommutative spaces. Class. Quant. Grav. 22, 3511–3522 (2005); [hep-th/0504183] · Zbl 1129.83011 · doi:10.1088/0264-9381/22/17/011
[18] Aschieri P., Dimitrijević M., Meyer F., Wess J.: Noncommutative geometry and gravity. Class. Quant. Grav. 23, 1883–1912 (2006); [hep-th/0510059] · Zbl 1091.83022 · doi:10.1088/0264-9381/23/6/005
[19] Aschieri P., Dimitrijević M., Meyer F., Schraml S., Wess J.: Twisted gauge theories. Lett. Math. Phys. 78, 61–71 (2006); [hep-th/0603024] · Zbl 1104.81080 · doi:10.1007/s11005-006-0108-0
[20] Vassilevich D.V.: Twist to close. Mod. Phys. Lett. A 21, 1279 (2006); [hep-th/0602185] · Zbl 1098.81793 · doi:10.1142/S0217732306020755
[21] Witten E.: Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986) · doi:10.1016/0550-3213(86)90155-0
[22] Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999); [hep-th/9908142] · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[23] Groenewold H.J.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946) · Zbl 0060.45002 · doi:10.1016/S0031-8914(46)80059-4
[24] Moyal J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[25] Weyl H.: Quantenmechenik und Gruppentheorie. Z. Phys. 46, 1 (1927) · JFM 53.0848.02 · doi:10.1007/BF02055756
[26] Rieffel M.A.: Deformation Quantization for Actions of R d , vol. 506. Memoirs American Mathematical Society, Providence (1993) · Zbl 0798.46053
[27] Estrada R., Gracia-Bondia J.M., Varilly J.C.: On asymptotic expansions of twisted products. J. Math. Phys. 30, 2789 (1989) · Zbl 0691.46056 · doi:10.1063/1.528514
[28] Minwalla S., Van Raamsdonk M., Seiberg N.: Noncommutative perturbative dynamics. JHEP 02, 020 (2000) · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[29] Hayakawa M.: Perturbative analysis on infrared and ultraviolet aspects on noncommutative QED on R 4. Phys. Lett. B 478, 394 (2000) · Zbl 1050.81719 · doi:10.1016/S0370-2693(00)00242-2
[30] Martin C.P., Sanchez-Ruiz D.: The one-loop UV divergent structure of U(1) Yang–Mills theory on noncommutative R 4. Phys. Rev. Lett. 83, 476 (1999); [arXiv:hep-th/9903077] · Zbl 0958.81199 · doi:10.1103/PhysRevLett.83.476
[31] Wulkenhaar R.: Non-renormalizabilty of {\(\theta\)}xpanded noncommutative QED. JHEP 0203, 024 (2002) · doi:10.1088/1126-6708/2002/03/024
[32] Grosse H., Wohlgenannt M.: Noncommutative QFT and renormalization. J. Phys. Conf. Ser. 53, 764 (2006); [arXiv:hep-th/0607208] · Zbl 1094.81050 · doi:10.1088/1742-6596/53/1/050
[33] Burić M., Latas D., Radovanović V.: Renormalizability of noncommutative SU(N) gauge theory. JHEP 0602, 046 (2006)
[34] Grosse H., Steinacker H., Wohlgenannt M.: Emergent gravity, matrix models and UV/IR mixing. JHEP 0804, 023 (2008); [arXiv:hep-th/0802.0973] · Zbl 1246.81162 · doi:10.1088/1126-6708/2008/04/023
[35] Micu A., Sheikh Jabbari M.M.: Noncommutative \({\phi^4}\) theory at two loops. JHEP 0101, 025 (2001); [hep-th/0008057] · doi:10.1088/1126-6708/2001/01/025
[36] Gerhold, A., Grimstrup, J., Grosse, H., Popp, L., Schweda, M., Wulkenhaar, R.: The energy–momentum tensor on noncommutative spaces: some pedagogical comments; hep-th/0012112 · Zbl 1059.81168
[37] Pengpan T., Xiong X.: A note on the non-commutative Wess–Zumino model. Phys. Rev. D 63, 085012 (2001); [hep-th/0009070] · doi:10.1103/PhysRevD.63.085012
[38] Abou-Zeid M., Dorn H.: Comments on the energy–momentum tensor in non-commutative field theories. Phys. Lett. B 514, 183 (2001); [hep-th/0104244] · Zbl 0969.81638 · doi:10.1016/S0370-2693(01)00780-8
[39] Gonera C., Kosinski P., Maslanka P., Giller S.: Space–time symmetry of noncommutative field theory. Phys. Lett. B 622, 192 (2005); [hep-th/0504132] · Zbl 1247.81226 · doi:10.1016/j.physletb.2005.07.012
[40] Gracia-Bondia, J.M., Lizzi, F., Ruiz, F.R., Vitale, P.: Noncommutative spacetime symmetries: twist versus covariance. Phys. Rev. D 74, 025014 (2006) [Erratum-ibid. D 74 (2006) 029901]; [arXiv:hep-th/0604206]
[41] Wess, J.: Deformed coordinate spaces; derivatives. In: lecture given at Balcan Workshop BW2003 on ”Mathematical, Theoretical and Phenomenological Challenges Beyond Standard Model”, Vrnjacka Banja, 29 August–02 September 2003; hep-th/0408080
[42] Chaichian M., Kulish P.P., Nishijima K., Tureanu A.: On a Lorentz-invariant interpretation of noncommutative space–time and its implications on noncommutative QFT. Phys. Lett. B 604, 98 (2004); [hep-th/0408069] · Zbl 1247.81518 · doi:10.1016/j.physletb.2004.10.045
[43] Koch F., Tsouchnika E.: Construction of {\(\theta\)}-Poincaré algebras and their invariants on M {\(\theta\)} . Nucl. Phys. B 717, 387 (2005); [hep-th/0408069] · Zbl 1207.81041 · doi:10.1016/j.nuclphysb.2005.04.019
[44] Gayral V., Gracia-Bondia J.M., Ruiz Ruiz F.: Position-dependent noncommutative products: classical construction and field theory. Nucl. Phys. B 727, 513 (2005); [arXiv:hep-th/0504022] · Zbl 1126.81311 · doi:10.1016/j.nuclphysb.2005.08.016
[45] Jurčo B., Schupp P., Wess J.: Nonabelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys. B 604, 148 (2001); [arXiv:hep-th/0102129] · Zbl 0983.81054 · doi:10.1016/S0550-3213(01)00191-2
[46] Sitarz A.: Dynamical noncommutativity. JHEP 0209, 034 (2002); [arXiv:math-ph/0206040] · doi:10.1088/1126-6708/2002/09/034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.