×

Nonlinear state estimation and control for freeway on-ramp metering. (English) Zbl 1357.93093

Summary: The work presented in this paper deals with freeway ramp metering using a differential flatness concept. Such an approach is deployed in the cases when the traffic data provided by loop detectors (or any measurements device), are partially unknown or missed, and/or the downstream measurement station, located at the vicinity of the controlled ramp, is faulty. The proposed solution rests on the estimation of the main variables using the “revised” method of numerical differentiation, i.e., estimation of the derivative of noisy time signals. Such an algebraic approach, which does not need any integration of differential equations, turns out to be quite robust with respect to perturbations inputs and measurements noises. Convincing numerical simulations are provided using a modified second-order continuum macroscopic model. Furthermore, a comparative study using the Extended Kalman Filter (EKF), which is the most used in the area of traffic state estimators, is proposed in order to demonstrate the effectiveness of the strategy.

MSC:

93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
90B20 Traffic problems in operations research
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Aström, K. J., P.Alberto, M.Blancke, A.Isidori, W.Schaufel‐Berger, and R.Sanz, Control of Complex Systems, Springer, Berkley, CA (2001). · Zbl 0969.93004
[2] Levine, W., The Control Systems Handbook, Edition CRC Press Taylor & Francis Group, Abingdon (1996).
[3] Menini, L., C.Zaccarian, and C. T.Abdallah (eds.), Current Trends in Nonlinear Systems and Control, Birkhäuser, Boston, MA (2006). · Zbl 1084.93001
[4] Kohan, R. R., “Robust state estimation and control of highway traffic systems,” Ph.D thesis, University of Toronto, Toronto, Canada (2001).
[5] Papageorgiou, M., Application of Automatic Control Concepts to Traffic Flow Modeling and Control, Springer‐Verlag, New York (1983). · Zbl 0528.90014
[6] Wang, Y., M.Papageorgiou, and A.Messmer, “Real‐time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing,” Trans. Res. P. ‐ A, 42, No. (10), pp. 1340-1358 (2008).
[7] Wang, Y. and M.Papageorgiou, “Real‐time freeway traffic state estimation based on extended Kalman filter: a general approach,” Trans. Res. P ‐ B, Vol. 39, pp. 141-167 (2005).
[8] Hegyi, A., D.Girimonte, R.Babusyka, and B.De‐Schutter, “A comparison of filter configurations for freeway traffic state estimation,” In Proc. IEEE ITSC’2006 Conf., Toronto, Canada, 17-20 (2006).
[9] Mihaylova, L., R.Boel, and A.Hegyi, “Freeway traffic estimation within recursive Bayesian framework,” Automatica, Vol. 43, pp. 290-300 (2009). · Zbl 1111.93076
[10] Doucet, A., N.Freitas, and N.Gordon. Sequential Monte Carlo Methods in Practice, Springer‐Verlag, New York (2006).
[11] Gazis, D. C. and C. H.Knapp, “On‐line estimation of traffic densities from times‐series of flow and speed data,” Transport. Sci., Vol. 5, pp. 283-302 (1971).
[12] Nahi, N. E., “Freeway data processing,” Proc. IEEE ITS Conf., 61, pp. 537-541 (1973).
[13] Papageorgiou, M. and G.Vigos, “Relating time‐occupancy measurements to space‐occupancy and link vehicle‐count,” Transportat. Res. Pt. C, 16, pp. 1-17 (2008).
[14] Rosas‐Jaimes, Ó. and LAlvarez‐Icaza, “Density and velocity estimation in traffic flow,” 16th IFAC World Congress, Prague, Czech Republic, pp. 2046-2051 (2005).
[15] Mboup, M., C.Join, and M.Fliess, “A revised look at numerical differentiation with an application to nonlinear feedback control,” 15th Mediterrean Conf. Control Autom., pp. 1-6 (2007).
[16] Fliess, M. and H.Sira‐Ramírez, “Reconstructeurs d”état,” C.R. Acad. Sci. Paris, Ser I, Vol. 338, pp. 91-96 (2004). · Zbl 1035.93019
[17] Ibrir, S., “Linear time‐derivatives trackers,” Automatica, Vol. 40, pp. 397-405 (2004). · Zbl 1044.93021
[18] Lanczos, C., Applied Analysis, Prentice Hall, Englewood Cliffs, NJ (1957).
[19] Lanczos, C., Linear Differential Operators, Van Nostrand, Prentice‐Hall, Dover (1961). · Zbl 0111.08305
[20] Abouaïssa, H.. “An algebraic framework for traffic state estimation,” Int. J Innov. Comp. Inform. Control, Vol. 5, No. (9), pp. 2499-2510 (2009).
[21] Lighthill, M. J. and G. B.Whitham, “On kinematic waves II: a theory of traffic flow in long crowded roads,” Proc. Royal Soc. London, Vol. A‐229, pp. 317-345 (1955). · Zbl 0064.20906
[22] Richards, P. I., “Shock waves on the highway,” Operations Res., Vol. 4, pp. 42-51 (1956). · Zbl 1414.90094
[23] Abouaïssa, H., M.Fliess, V.Iordanova, and C.Join, “Fast parametric estimation for macroscopic traffic flow model,” 17th IFAC World Congress, Seoul, South Korea (2008).
[24] Abouaïssa, H., M.Fliess, V.Iordanova, and C.Join, “Vers une caractérisation non linéaire d”un réseau autoroutier,” 3^es J. Identif. Modél. Expériment., Douai, France (2011).
[25] Li, N. and G.Zhao, “A parameter identification scheme for second order highway traffic model based on differential algebraic methodology,” Proc. ICSEE‐2013, CCIS., Vol. 355, pp. 85-93 (2013).
[26] Chávez‐Conde, E., F.Beltrán‐Carbajal, C.García‐Rodríguez, and A.Blanco‐Ortega, “Sliding mode based differential flatness control and state estimation of vehicle active suspensions,” 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE, pp. 1-6 (2009).
[27] Hoogendoorn, S. P. and P. H.Bovy, “State‐of‐art of vehicular traffic modelling,” Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng., Vol. 215, No. (1), pp. 383-303 (2001).
[28] Hilliges, M. and W.Weidlich, “A phenomenological model for dynamic traffic flow in networks,” Transp. Res. Pt. B, Vol. 29, No. (6), pp. 407-431 (1995).
[29] Payne, H. J., “Models of traffic and control,” Simul. Council Proc. Math. Models Public Syst., Vol. 1, No. (6), pp. 51-61 (1971).
[30] Papageorgiou, M., J.‐M.Blosseville, and H.Hadj‐Salem, “Modelling and real‐time control of traffic flow on the southern part of boulevard peripherique in Paris - Part I: Modelling,” Transp. Res. Pt. A, Vol. 24, pp. 345-359 (1990).
[31] May, A. D., Traffic Flow Fundamentals, Prentice‐Hall, Englewood Cliffs, New Jersey (1990).
[32] Castillo, J. and F.Benitez, “On the functional form of the speed‐density relationship‐I: general theory,” Transp. Res. Pt. B, Vol. 29, pp. 373-389 (2006).
[33] Papageorgiou, M., Traffic Control, Handbook of Transportation Science, Ch. 8: New York (2001).
[34] Fliess, M., C.Join, and H.Sira‐Ramírez, “Non‐linear estimation is easy,” Int. J. Model Identif. Control., Vol. 4, pp. 12-27 (2008).
[35] Fliess, M., “Analyse non standard du bruit,” C. R. Acad. Sci. Paris Ser., Vol. 342, pp. 797-802 (2006). · Zbl 1093.94009
[36] Fliess, M. and H.Sira‐Ramírez, “An algebraic framework for linear identification,” ESAIM Control Optim. Calc. Var., Vol. 9, pp. 151-168 (2003). · Zbl 1063.93014
[37] Fliess, M. and H.Sira‐Ramírez, “Closed‐loop parametric identification for continuous‐time linear systems via new algebraic techniques,” In Garnier, H. (ed.) and L.Wang (ed.) (Eds). In Identification of Continuous‐Time Models from Sampled Data, Springer, pp. 362-391 (2008).
[38] Yosida, K., Operational Calculus: a Theory of Hyperfunctions, Springer (1984). (Translated from Japanese.) · Zbl 0542.44001
[39] Mboup, M., C.Join, and M.Fliess, “Numerical differentiation with annihilators in noisy environment,” Numer. Algorithms, Vol. 50, pp. 439-467 (2009). · Zbl 1162.65009
[40] Diop, S. and M.Fliess, “On nonlinear observability,” In Proc. 1^st Europ. Control Conf., Hermès, France, Vol. 152-157 (1991).
[41] Bellemans, T., B.De Schutter, and B.De Moor, “Model predictive control for ramp metering of motorway traffic: a case study,” Control Eng. Practice, Vol. 14, pp. 757-767 (2006).
[42] Kachroo, P. and K.Ozbay. Feedback Ramp Metering in Intelligent Transportation Systems, Springer, New York (2003).
[43] Haj‐Salem, H., J.‐M.Blosseville, and M.Papageorgiou, “ALINEA ‐ A local feedback control law for on‐ramp metering: a real life study,” 3^rd IEEE Int. Conf. Road Traffic Control, London, UK, Vol. 194-198 (1990).
[44] Fliess, M., J.Lévine, P.Martin, and P.Rouchon, “Sur les systèmes non linéaires différentiellement plats,” C.R. Acad. Sci., Vol. I‐315, pp. 619-624 (1992). · Zbl 0776.93038
[45] Sira‐Ramírez, H. and S. K.Agrawal. Differentially Flat Systems, Marcel Dekker, (2004). · Zbl 1126.93003
[46] Fliess, M., J.Lévine, P.Martin, and P.Rouchon, “A Lie‐Backlund approach to equivalence and flatness in nonlinear systems,” IEEE Trans. Autom. Control, Vol. 44, No. (5), pp. 928-937 (1999). · Zbl 0964.93028
[47] Abouaïssa, H., V.Iordanova, and D.Jolly, “Integrated control of highway systems using flatness‐based concept,” Proc. SCS‐IFAC, Int. Modeling Simulation MultiConf., Int. Conf. Advances Vehicle Control Safety, Buenos Aires, Argentina (2007).
[48] Rouchon, P., “Flatness based control of oscillators,” ZAMM Z. J. Appl. Math. and Mech., Vol. 85, No. (6), pp. 411-421 (2005). · Zbl 1079.93026
[49] Martin, P. H., R. M.Murray, and P.Rouchon, “Flat systems,” Mini‐course ECC’97, Brussels, Belgioum, pp. 211-264 (1997).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.