×

Parametric control to avoid bifurcation based on maximum local Lyapunov exponent. (English) Zbl 1314.93038

Aihara, Kazuyuki (ed.) et al., Analysis and control of complex dynamical systems. Robust bifurcation, dynamic attractors, and network complexity. Tokyo: Springer (ISBN 978-4-431-55012-9/hbk; 978-4-431-55013-6/ebook). Mathematics for Industry 7, 49-55 (2015).
Summary: This chapter presents a parametric controller to avoid bifurcations of stable periodic points in nonlinear discrete-time dynamical systems. The parameter regulation in the controller can be theoretically derived from the optimization of the Maximum Local Lyapunov Exponent (MLLE) that is closely related to the stability index of stable fixed and periodic points. Differently from the stability index, the MLLE is differentiable with respect to system parameters in general and can be computed in real time without finding the exact position of fixed and periodic points. The computation of parameter updating to avoid bifurcations can be also realized along the passage of time. Therefore, the parametric controller we propose can detect the approach of parameter values to bifurcation points by monitoring the MLLE and avoid the bifurcation points by suppressing the MLLE below a prescribed negative value even when unexpected parameter variation causing bifurcations occurs. The outline of our controller and experimental results to evaluate whether our controller is effective for avoiding bifurcations are presented.
For the entire collection see [Zbl 1310.34001].

MSC:

93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
93D99 Stability of control systems
Full Text: DOI

References:

[1] Abarbanel, H.; Brown, R.; Kennel, M., Local Lyapunov exponents computed from observed data, J. Nonlinear Sci., 2, 343-365 (1992) · Zbl 0802.58041 · doi:10.1007/BF01208929
[2] Alberto, J.M. (ed.): Discrete Time Systems. InTech (2011). http://www.intechopen.com/books/discrete-time-systems
[3] Ali, M., Saha, L.: Local Lyapunov exponents and characteristics of fixed/periodic points embedded within a chaotic attractor. J. Zhejiang Univ. Sci. A. 6, 296-304 (2005) · Zbl 1084.37027
[4] Dingwell, J.B.: Lyapunov exponents. In: Akay M. (ed.) Wiley Encyclopedia of Biomedical Engineering. Wiley, New York (2006)
[5] Eckmann, JP; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656 (1985) · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[6] Fujimoto, K.; Aihara, K., Bifurcation avoidance control of stable periodic points using the maximum local Lyapunov exponent, Nonlinear Theory Appl. IEICE, 6, 2-14 (2015) · doi:10.1587/nolta.6.2
[7] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[8] Honma, N., Control of the complexity in recurrent neural networks (in Japanese), Bull. Coll. Medi. Sci, Tohoku Univ., 8, 23-30 (1999)
[9] Kawakami, H., Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters, IEEE Trans. Circ. Syst., 31, 248-260 (1984) · Zbl 0548.94035 · doi:10.1109/TCS.1984.1085495
[10] Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd edn. Applied Mathematical Sciences. Springer, Berlin (2004) · Zbl 1082.37002
[11] Marco, S., Numerical calculation of Lyapunov exponents, Math. J., 6, 78-84 (1996)
[12] Oseledec, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197-231 (1968) · Zbl 0236.93034
[13] Sano, M.; Sawada, Y., Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 1082-1085 (1985) · doi:10.1103/PhysRevLett.55.1082
[14] Sun, J.; Amellal, F.; Glass, L.; Billette, J., Alternans and period-doubling bifurcations in atrioventricular nodal conduction, J. Theor. Biol., 173, 79-91 (1995) · doi:10.1006/jtbi.1995.0045
[15] Tsumoto, K.; Ueta, T.; Yoshinaga, T.; Kawakami, H., Bifurcation analyses of nonlinear dynamical systems: from theory to numerical computations, Nonlinear Theory Appl. IEICE., 3, 458-476 (2012) · doi:10.1587/nolta.3.458
[16] Wolf, A.; Swift, JB; Swinney, HL; Vastano, JA, Determining Lyapunov exponents from a time series, Phys. D., 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.