×

Counting isomorphism classes of pointed hyperelliptic curves of genus 4 over finite fields with even characteristic. (English) Zbl 1206.14044

Any hyperelliptic curve \(C\) of genus \(g\), having a rational Weierstrass point, admits a non-singular affine model of the type: \(v^2+h(u)v=f(u)\), where \(h(u),f(u)\) are polynomials of respective degree \(\deg h\leq g\), \(\deg f=2g+1\). For \(C\) given by such a model, P. Lockhart characterized the isomorphism classes of pointed curves \((C,P)\), where \(P\) is the Weierstrass point of \(C\) at infinity, in terms of explicit plane coordinate transformations preserving the shape of the model [P. Lockhart, Trans. Am. Math. Soc. 342, No. 2, 729–752 (1994; Zbl 0815.11031)].
The paper under review is devoted to counting the number of isomorphism classes of pointed hyperelliptic curves of genus \(4\) over finite fields of characteristic \(2\), by counting the number of Lockhart’s transformations. For finite fields of odd characteristic the number of (pointed and non-pointed) hyperelliptic curves of arbitrary genus \(g\) is counted in [the reviewer, Adv. Math. 221, No. 3, 774–787 (2009; Zbl 1214.11078)].

MSC:

14G15 Finite ground fields in algebraic geometry
11G20 Curves over finite and local fields

References:

[1] Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptol., 1, 139–150 (1989) · Zbl 0674.94010 · doi:10.1007/BF02252872
[2] Cantor, D. G.: Computing in the jacobian of a hyperelliptic curve. Math. Comput., 48, 95–101 (1987) · Zbl 0613.14022 · doi:10.1090/S0025-5718-1987-0866101-0
[3] Adleman, L. M., DeMarrais, J., Huang, M.-D. A.: A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields. In: Adleman, L. M., Huang, M.-D. A. (Eds.): Algorithmic Number Theory, Lecture Notes in Computer Science, Vol. 877, Springer-Verlag, Berlin, 1994, 28–40 · Zbl 0829.11068
[4] Enge, A.: Computing discrete logarithms in high-genus hyperelliptic jacobians in provably subexponential time. Math. Comput., 71, 729–742 (2002) · Zbl 0988.68069
[5] Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (Ed.): Advances in Cryptology-Eurocrypt 2000, Lecture Notes in Computer Science, Vol. 1807, Springer-Verlag, Berlin, 2000, 19–34 · Zbl 1082.94517
[6] Thériault, N.: Index calculus attack for hyperelliptic curves of small genus. In: Laih, C. S. (Ed.): Advances in Cryptology-Asiacrypt 2003, Lecture Notes in Computer Science, Vol. 2894, Springer-Verlag, Berlin, 2003, 75–92 · Zbl 1205.94103
[7] Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for small genus hyperelliptic index calculus. Math. Comput., 76, 475–492 (2007) · Zbl 1179.94062 · doi:10.1090/S0025-5718-06-01900-4
[8] Pelzl, J., Wollinger, T., Paar, C.: Low cost security: explicit formulae for genus-4 hyperelliptic curves. In: Matsui, M., Zuccherato, R. (Eds.): Selected Areas in Cryptography 2003, Lecture Notes in Computer Science, Vol. 3006, Springer-Verlag, Berlin, 2004, 1–16 · Zbl 1081.94033
[9] Avanzi, R., Thériault, N., Wang, Z.: Rethinking low genus hyperelliptic Jacobian arithmetic over binary fields: interplay of field arithmetic and explicit formulae. J. Math. Cryptol., 2, 227–255 (2008) · Zbl 1146.14032 · doi:10.1515/JMC.2008.011
[10] Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Combin. Theory, Ser. A, 46, 183–211 (1987) · Zbl 0632.14021 · doi:10.1016/0097-3165(87)90003-3
[11] Menezes, A. J., Vanstone, S.: Isomorphism classes of elliptic curves over finite fields of characteristic 2. Utilitas Math., 38, 135–153 (1990) · Zbl 0727.14021
[12] Encinas, L. H., Menezes, A. J., Masqué, J. M.: Isomorphism classes of genus-2 hyperelliptic curves over finite fields. Appl. Algebra Engrg. Comm. Comput., 13, 57–65 (2002) · Zbl 1066.14026 · doi:10.1007/s002000100092
[13] Encinas, L. H., Masqué, J. M.: Isomorphism classes of genus-2 hyperelliptic curves over finite fields F5 m. Information, 8, 837–844 (2005)
[14] Choie, Y., Yun, D.: Isomorphism classes of hyperelliptic curves of genus 2 over \( \mathbb{F} \) q. In: Batten, L. M., Seberry, J. (Eds.): Information Security and Privacy, Lecture Notes in Computer Science, Vol. 2384, Springer-Verlag, Berlin, 2002, 190–202 · Zbl 1022.11029
[15] Choie, Y., Jeong, E.: Isomorphism classes of hyperelliptic curves of genus 2 over \( \mathbb{F} \) 2 n. Cryptology ePrint Archive 2003/213, Available at http://eprint.iacr.org/2003/213
[16] Deng, Y., Liu, M.: Isomorphism classes of hyperelliptic curves of genus 2 over finite fields with characteristic 2. Sci. China, Ser. A, 49, 173–184 (2006) · Zbl 1101.14036 · doi:10.1007/s11425-004-0043-4
[17] García, J. E., Encinas, L. H., Masqué, J. M.: A review on the isomorphism classes of hyperelliptic curves of genus 2 over finite fields admitting a Weierstrass point. Acta Appl. Math., 93, 299–318 (2006) · Zbl 1113.11036 · doi:10.1007/s10440-006-9045-2
[18] Choie, Y., Jeong, E.: Isomorphism classes of elliptic and hyperelliptic curves over finite fields \( \mathbb{F} \) (2g+1) n. Finite Fields Appl., 10, 583–614 (2004) · Zbl 1082.11040 · doi:10.1016/j.ffa.2003.12.003
[19] Jeong, E.: Isomorphism classes of hyperelliptic curves of genus 3 over finite fields. Cryptology ePrint Archive 2003/251, Available at http://eprint.iacr.org/2003/251
[20] Deng, Y.: Isomorphism classes of hyperelliptic curves of genus 3 over finite fields. Finite Fields Appl., 12, 248–282 (2006) · Zbl 1094.11023 · doi:10.1016/j.ffa.2005.05.006
[21] Deng, Y., Liu, M.: Counting isomorphism classes of pointed hyperelliptic curves of genus 4 over finite fields with odd characteristic. European J. Combin., 29, 1436–1448 (2008) · Zbl 1145.14026 · doi:10.1016/j.ejc.2007.06.007
[22] Scholten, J., Zhu, H. J.: Hyperelliptic curves in characteristic 2. Inter. Math. Research Notices, 17, 905–917 (2002) · Zbl 1034.14013 · doi:10.1155/S1073792802111160
[23] Menezes, A. J., Wu, Y. H., Zuccherato, R. J.: An elementary introduction to hyperelliptic curves. As an appendix in: Koblitz, N.: Algebraic Aspects of Cryptography, Algorithms and Computation in Mathematics, vol. 3, Springer-Verlag, Berlin, 1998, 155–178
[24] Lockhart, P.: On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc., 342, 729–752 (1994) · Zbl 0815.11031 · doi:10.2307/2154650
[25] Dixon, J. D., Mortimer, B.: Permutation Groups, Graduate Texts in Mamthematics, Vol. 163, Springer-Verlag, Berlin, 1996 · Zbl 0951.20001
[26] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1994 1055–1070 · Zbl 0820.11072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.