×

Computer simulation of electron energy state spin-splitting in nanoscale LnAs/GaAs semiconductor quantum rings. (English) Zbl 1297.82003

Summary: In this paper, we model and computationally investigate the effect of spin-orbit interaction on the electron energy spectra for nanoscale semiconductor quantum rings. Our three-dimensional mathematical model considers the effective one-electron band Hamiltonian, the energy- and position-dependent electron effective mass approximation, and the spin-dependent Ben Daniel-Duke boundary conditions. The nonlinear iterative method is applied to solve the corresponding nonlinear eigenvalue problem, which converges monotonically for all energy states. Physically, it is found that the spin-dependent boundary conditions lead to a spin-splitting of the electron energy states with non-zero angular momentum in nanoscale InAs/GaAs quantum rings. The spin-splitting is strongly dependent upon the dimension of the explored quantum ring and is dominated by the inner radius, the base radius, and the height of the quantum ring. Under zero magnetic fields, the spin-splitting energy is decreased when the radius is increased. Meanwhile, it is greater than that of the InAs/GaAs quantum dot and demonstrates an experimentally measurable quantity (up to 2 meV) for relatively small semiconductor quantum rings.

MSC:

82-08 Computational methods (statistical mechanics) (MSC2010)
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82D80 Statistical mechanics of nanostructures and nanoparticles
Full Text: DOI

References:

[1] Zipper, E.; Kurpas, M.; Sadowski, J.; Maska, M., Spin relaxation in semiconductor quantum rings and dots—a comparative study, Journal of Physics: Condensed Matter, 23, 115302 (2011)
[2] Akinaga, J.; Ohno, H., Semiconductor spintronics, IEEE Transactions on Nanotechnology, 1, 19-31 (2002)
[3] Bayer, M.; Hawrylak, P.; Hinzer, K.; Fafard, S.; Korkusinski, M.; Wasilewski, Z. R.; Stern, O.; Forchel, A., Coupling and entangling of quantum states in quantum dot molecules, Science, 291, 451-453 (2001)
[4] Yoffe, A. D., Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Advances in Physics, 50, 1-208 (2001)
[5] Abbarchi, M.; Mastrandrea, A.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Kuroda, T.; Koguchi, N.; Sakoda, K.; Gurioli, M., Photon antibunching in double quantum ring structures, Physical Review B, 79, 085308 (2009)
[6] Keyser, U. F.; Fuhner, C.; Borck, S.; Haug, R. J., Kondo effect in a few-electron quantum ring, Physical Review Letters, 90, 196601 (2003)
[7] Fuhrer, A.; Luscher, S.; Ihn, T.; Heinzel, T.; Ensslin, K.; Wegscheider, W.; Bichler, M., Energy spectra of quantum rings, Nature, 413, 822-824 (2001)
[8] Lorke, A.; Johannes Luyken, R.; Govorov, A. O.; Kotthaus, J. P.; Garcia, J. M.; Petroff, P. M., Spectroscopy of nanoscopic semiconductor rings, Physical Review Letters, 84, 2223 (2000)
[9] Garcia, J. M.; Medeiros-Ribeiro, G.; Schmidt, K.; Ngo, T.; Feng, J. L.; Lorke, A.; Kotthaus, J.; Petroff, P. M., Intermixing and shape changes during the formation of InAs self-assembled quantum dots, Applied Physics Letters, 71, 2014-2016 (1997)
[10] Li, Y., Numerical calculation of electron energy states for nanoscopic InAs/GaAs quantum rings, International Journal of Modern Physics C, 14, 995-1006 (2003)
[11] Dresselhaus, G., Spin-orbit coupling effects in zinc blende structures, Physical Review, 100, 580-586 (1955) · Zbl 0065.23703
[12] Emperador, A.; Pederiva, F.; Lipparini, E., Spin- and localization-induced fractional Aharonov-Bohm effect, Physical Review B, 68, 115312 (2003)
[13] Tarucha, S.; Honda, T.; Austing, D. G.; Tokura, Y.; Muraki, K.; Oosterkamp, T. H.; Janssen, J. W., Electronic states in quantum dot atoms and molecules, Physica E, 3, 112-120 (1998)
[14] Bychkov, Y. A.; Rashba, E. I., Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, Journal of Physics C: Solid State Physics, 17, 6039-6046 (1984)
[15] Li, Y.; Voskoboynikov; Lee, C. P.; Sze, S. M.; Tretyak, O., Electron energy state spin-splitting in 3D cylindrical semiconductor quantum dots, The European Physical Journal B, 28, 475-481 (2002)
[16] de Andrada e. Silva, E. A.; La Rocca, G. C.; Bassani, F., Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells, Physical Review B, 55, 16293-16299 (1997)
[17] Mal’shukov, A. G.; Chao, K. A., Waveguide diffusion modes and slowdown of D’yakonov-Perel’ spin relaxation in narrow two-dimensional semiconductor channels, Physical Review B, 61, 2413-2416 (2000)
[18] Racec, P. N.; Stoica, Toma; Popescu, Corneliu; Lepsa, Mihail; van de Roer, Th. G., Physics of optimal resonant tunneling, Physical Review B, 56, 3595-3597 (1997)
[19] Emperador, A.; Pi, M.; Barranco, M.; Lorke, A., Far-infrared spectroscopy of nanoscopic InAs rings, Physical Review B, 62, 4573-4577 (2000)
[20] Frustaglia, D.; Richter, K., Spin interference effects in ring conductors subject to Rashba coupling, Physical Review B, 69, 235310 (2004)
[21] Meijer, F. E.; Morpurgo, A. F.; Klapwijk, T. M., One-dimensional ring in the presence of Rashba spin-orbit interaction: derivation of the correct Hamiltonian, Physical Review B, 66, 033107 (2002)
[22] Aronov, A. G.; Lyanda-Geller, Y. B., Spin-orbit Berry phase in conducting rings, Physical Review Letters, 70, 343-346 (1993)
[23] Li, Y.; Voskoboynikov, O.; Lee, C. P.; Sze, S. M.; Tretyak, O., A computational method for energy level spin splitting simulation in inas/gaas semiconductor quantum dots, International Journal of Modern Physics C, 13, 453-464 (2002)
[24] Li, Y.; Voskoboynikov, O.; Lee, C. P.; Sze, S. M., Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots, Computer Physics Communications, 141, 66-72 (2001) · Zbl 1035.81619
[25] Li, Y., Numerical calculation of electronic structure for three-dimensional nanoscale semiconductor quantum dots and rings, Journal of Computational Electronics, 2, 49-57 (2003)
[26] Li, Y., An iterative method for single and vertically stacked semiconductor quantum dots simulation, Mathematical and Computer Modelling, 42, 711-718 (2005) · Zbl 1094.82517
[27] Li, Y.; Lu, H.-M., Electron transition energy for vertically coupled InAs/GaAs semiconductor quantum dots and rings, Japanese Journal of Applied Physics, 43, 2104-2109 (2004)
[28] Voss, H., Numerical calculation of the electronic structure for three-dimensional quantum dots, Computer Physics Communications, 174, 441-446 (2006) · Zbl 1196.65099
[29] Braman, K.; Byers, R.; Mathias, R., The multishift QR algorithm. Part II: aggressive early deflation, SIAM Journal on Matrix Analysis and Applications, 23, 948-973 (2002) · Zbl 1017.65032
[30] Braman, K.; Byers, R.; Mathias, R., The multishift QR algorithm. Part I: maintaining well-focused shifts and level 3 performance, SIAM Journal on Matrix Analysis and Applications, 23, 929-947 (2002) · Zbl 1017.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.