×

Theory of \(\phi\)-Jensen variance and its applications in higher education. (English) Zbl 1334.62135

Summary: This paper introduces the theory of \(\phi\)-Jensen variance. Our main motivation is to extend the connotation of the analysis of variance and facilitate its applications in probability, statistics and higher education. To this end, we first introduce the relevant concepts and properties of the interval function. Next, we study several characteristics of the log-concave function and prove an interesting quasi-log concavity conjecture. Next, we introduce the theory of \(\phi\)-Jensen variance and study the monotonicity of the interval function \(\operatorname{JVar}_{\phi}\varphi ( {{X _{ [ {a,b} ] }}} )\) by means of the log concavity. Finally, we demonstrate the applications of our results in higher education, show that the hierarchical teaching model is ‘normally’ better than the traditional teaching model under the appropriate hypotheses, and study the monotonicity of the interval function \(\operatorname{Var} \mathcal{A} (X _{[{a,b}]})\).

MSC:

62J10 Analysis of variance and covariance (ANOVA)
26D15 Inequalities for sums, series and integrals

References:

[1] Wen, JJ, Han, TY, Cheng, SS: Quasi-log concavity conjecture and its applications in statistics. J. Inequal. Appl. 2014, Article ID 339 (2014) · Zbl 1332.26045 · doi:10.1186/1029-242X-2014-339
[2] Hawkins, GE, Brown, SD, Steyvers, M, Wagenmakers, EJ: Context effects in multi-alternative decision making: empirical data and a Bayesian model. Cogn. Sci. 36, 498-516 (2012) · doi:10.1111/j.1551-6709.2011.01221.x
[3] Yang, CF, Pu, YJ: Bayes analysis of hierarchical teaching. Math. Pract. Theory 34(9), 107-113 (2004) (in Chinese)
[4] de Valpine, P: Shared challenges and common ground for Bayesian and classical analysis of hierarchical models. Ecol. Appl. 19, 584-588 (2009) · doi:10.1890/08-0562.1
[5] Carlin, BP, Gelfand, AE, Smith, AFM: Hierarchical Bayesian analysis of change point problem. Appl. Stat. 41(2), 389-405 (1992) · Zbl 0825.62408 · doi:10.2307/2347570
[6] Pec̆arić, JE, Proschan, F, Tong, YL: Convex Functions. Academic Press, New York (1992)
[7] Wen, JJ: The inequalities involving Jensen functions. J. Syst. Sci. Math. Sci. 27(2), 208-218 (2007) (in Chinese) · Zbl 1135.26018
[8] Wen, JJ, Zhang, ZH: Jensen type inequalities involving homogeneous polynomials. J. Inequal. Appl. 2010, Article ID 850215 (2010) · Zbl 1193.26024 · doi:10.1155/2010/850215
[9] Gao, CB, Wen, JJ: Theory of surround system and associated inequalities. Comput. Math. Appl. 63, 1621-1640 (2012) · Zbl 1252.70030 · doi:10.1016/j.camwa.2012.03.037
[10] Wen, JJ, Gao, CB, Wang, WL: Inequalities of J-P-S-F type. J. Math. Inequal. 7(2), 213-225 (2013) · Zbl 1271.26014 · doi:10.7153/jmi-07-20
[11] An, MY: Log-Concave Probability Distributions: Theory and Statistical Testing. Duke University Press, Durham (1995)
[12] An, MY: Log-concavity and statistical inference of linear index modes. Manuscript, Duke University (1997) · Zbl 1117.15020
[13] Finner, H, Roters, M: Log-concavity and inequalities for Chi-square, F and Beta distributions with applications in multiple comparisons. Stat. Sin. 7, 771-787 (1997) · Zbl 0955.62014
[14] Miravete, EJ: Preserving log-concavity under convolution: comment. Econometrica 70(3), 1253-1254 (2002). doi:10.1111/1468-0262.00327 · doi:10.1111/1468-0262.00327
[15] Al-Zahrani, B, Stoyanov, J: On some properties of life distributions with increasing elasticity and log-concavity. Appl. Math. Sci. 2(48), 2349-2361 (2008) · Zbl 1291.62179
[16] Caramanis, C, Mannor, S: An inequality for nearly log-concave distributions with applications to learning. IEEE Trans. Inf. Theory 53(3), 1043-1057 (2007) · Zbl 1310.94022 · doi:10.1109/TIT.2006.890699
[17] Tong, YL: An adaptive solution to ranking and selection problems. Ann. Stat. 6(3), 658-672 (1978) · Zbl 0384.62025 · doi:10.1214/aos/1176344210
[18] Bagnoli, M, Bergstrom, T: Log-concave probability and its applications. Mimeo, University of Michigan (1991) · Zbl 1137.60309
[19] Patel, JK, Read, CB: Handbook of the Normal Distribution, 2nd edn. CRC Press, Boca Raton (1996) · Zbl 0846.62010
[20] Heckman, JJ, Honor, BE: The empirical content of the Roy model. Econometrica 58(5), 1121-1149 (1990) · doi:10.2307/2938303
[21] Wen, JJ, Han, TY, Gao, CB: Convergence tests on constant Dirichlet series. Comput. Math. Appl. 62(9), 3472-3489 (2011) · Zbl 1251.11090 · doi:10.1016/j.camwa.2011.08.064
[22] Wen, JJ, Han, TY, Cheng, SS: Inequalities involving Dresher variance mean. J. Inequal. Appl. 2013, Article ID 366 (2013) · Zbl 1285.26047 · doi:10.1186/1029-242X-2013-366
[23] Pec̆arić, JE, Wen, JJ, Wang, WL, Tao, L: A generalization of Maclaurin’s inequalities and its applications. Math. Inequal. Appl. 8(4), 583-598 (2005) · Zbl 1087.26019
[24] Wen, JJ, Wang, WL: Inequalities involving generalized interpolation polynomial. Comput. Math. Appl. 56(4), 1045-1058 (2008) · Zbl 1155.26310 · doi:10.1016/j.camwa.2008.01.032
[25] Wen, JJ, Cheng, SS: Closed balls for interpolating quasi-polynomials. Comput. Appl. Math. 30(3), 545-570 (2011)
[26] Wen, JJ, Wang, WL: Chebyshev type inequalities involving permanents and their applications. Linear Algebra Appl. 422(1), 295-303 (2007) · Zbl 1117.15020 · doi:10.1016/j.laa.2006.10.014
[27] Wen, JJ, Wu, SH, Han, TY: Minkowski-type inequalities involving Hardy function and symmetric functions. J. Inequal. Appl. 2014, Article ID 186 (2014) · Zbl 1372.26024 · doi:10.1186/1029-242X-2014-186
[28] Wen, JJ, Cheng, SS, Gao, C: Optimal sublinear inequalities involving geometric and power means. Math. Bohem. 134(2), 133-149 (2009) · Zbl 1212.26079
[29] Wlodzimierz, B: The Normal Distribution: Characterizations with Applications. Springer, Berlin (1995) · Zbl 0823.62012
[30] Spiegel, MR: Theory and Problems of Probability and Statistics, pp. 109-111. McGraw-Hill, New York (1992)
[31] Whittaker, ET, Robinson, G: The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edn., pp. 164-208. Dover, New York (1967)
[32] Nadarajah, S: A generalized normal distribution. J. Appl. Stat. 32(7), 685-694 (2005) · Zbl 1121.62447 · doi:10.1080/02664760500079464
[33] Varanasi, MK, Aazhang, B: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86(4), 1404-1415 (1989) · doi:10.1121/1.398700
[34] Johnson, OT: Information Theory and the Central Limit Theorem, p. 88. Imperial College Press, London (2004) · Zbl 1061.60019 · doi:10.1142/p341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.