×

Independence, successive and conditional likelihood for time series of counts. (English) Zbl 1421.62132

Summary: Serial correlation and overdispersion must be handled properly in analyses of time series of counts, and parameter-driven models combine an underlying latent process with a conditional log-linear Poisson model (given the latent process) for that purpose. Regression coefficients have direct interpretations, but likelihood inference is not straight-forward. We consider a two-step procedure for estimation: First regression parameters are estimated from the marginal distribution; second parameters concerning the latent process are estimated with composite likelihood methods, based on low-order simultaneous or conditional distributions. Confidence intervals are computed by bootstrap. Properties of estimators are examined and compared to other methods in three simulation studies, and the methods are applied to two datasets from the literature concerning hospital admission related to asthma and traffic deaths.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62J05 Linear regression; mixed models
62J12 Generalized linear models (logistic models)
62G09 Nonparametric statistical resampling methods

Software:

lme4; R; bootlib; glarma; tscount

References:

[1] Azzalini, A., Maximum likelikood estimation of order \(m\) for stationary processes, Biometrika, 70, 381-387 (1983) · Zbl 0533.62078
[2] Bates, D.; Mächler, M.; Bolker, B.; Walker, S., Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67, 1, 1-48 (2015)
[3] Chan, K. S.; Ledolter, J., Monte Carlo EM estimation for time series models involving counts, J. Amer. Statist. Assoc., 90, 242-252 (1995) · Zbl 0819.62069
[4] Consul, P.; Famoye, F., Generalized Poisson regression model, Comm. Statist. Theory Methods, 21, 1, 89-109 (1992) · Zbl 0800.62355
[5] Cox, D. R., Statistical analysis of time series: Some recent developments, Scand. J. Stat., 8, 93-115 (1981) · Zbl 0468.62079
[6] Davis, R. A.; Dunsmuir, W. T.M.; Street, S. B., Observation-driven models for Poisson counts, Biometrika, 90, 777-790 (2003) · Zbl 1436.62418
[7] Davis, R. A.; Dunsmuir, W. T.M.; Street, S. B., Maximum likelihood estimation for an observation driven model for Poison counts, Methodol. Comput. Appl. Probab., 7, 149-159 (2005) · Zbl 1078.62091
[8] Davis, R. A.; Dunsmuir, W. T.M.; Wang, Y., On autocorrelation in a Poisson regression model, Biometrika, 87, 491-505 (2000) · Zbl 0956.62075
[9] Davis, R. A.; Rodriguez-Yam, G., Estimation for state-space models based on a likelihood approximation, Statist. Sinica, 15, 381-406 (2005) · Zbl 1070.62070
[10] Davis, R. A.; Yau, C. Y., Comments on pairwise likelihood in time series models, Statist. Sinica, 21, 255-278 (2011) · Zbl 1206.62146
[11] Davison, A.; Hinkley, D., Bootstrap Methods and their Application (1997), Cambridge University Press: Cambridge University Press New York · Zbl 0886.62001
[12] Dunsmuir, W. T.M.; Scott, D. J., The glarma package for observation-driven time series regression of counts, J. Stat. Softw., 67, 7, 1-36 (2015)
[13] Durbin, J.; Koopman, S. J., Monte Carlo maximum likelihood estimation for non-Gaussian state space models, Biometrika, 84, 669-684 (1997) · Zbl 0888.62086
[14] Fokianos, K.; Rahbek, A.; Tjøstheim, D., Poisson autoregression, J. Amer. Statist. Assoc., 104, 1430-1439 (2009) · Zbl 1205.62130
[15] Hay, J.; Pettitt, A., Bayesian analysis of a time series of counts with covariates: an application to the control of an infectious disease, Biostatistics, 2, 433-444 (2001) · Zbl 1097.62560
[16] Jung, R. C.; Kukuk, M.; Liesenfeld, R., Time series of count data: modeling, estimation and diagnostics, Comput. Statist. Data Anal., 51, 2350-2364 (2006) · Zbl 1157.62492
[17] Lee, Y.; Nelder, J. A., Hierarchical generalized linear models, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 4, 619-678 (1996) · Zbl 0880.62076
[18] Lee, Y.; Nelder, J. A., Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions, Biometrika, 88, 4, 987-1006 (2001) · Zbl 0995.62066
[19] Lee, Y.; Nelder, J. A., Modelling and analysing correlated non-normal data, Stat. Model., 1, 1, 3-16 (2001) · Zbl 1004.62080
[20] Liboschik, T., Fried, R., Fokianos, K., Probst, P., 2016. tscount: Analysis of count time series. R package version 1.3.0.; Liboschik, T., Fried, R., Fokianos, K., Probst, P., 2016. tscount: Analysis of count time series. R package version 1.3.0.
[21] R Core Team, R: A Language and Environment for Statistical Computing (2016), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[22] Shmueli, G.; Minka, T. P.; Kadane, J. B.; Borle, S.; Boatwright, P., A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution, J. R. Stat. Soc. Ser. C. Appl. Stat., 54, 1, 127-142 (2005) · Zbl 1490.62058
[23] Sørensen, H., Simulated likelihood approximations for stochastic volatility models, Scand. J. Stat., 30, 257-276 (2003) · Zbl 1053.62090
[24] van der Vaart, A. W., Asymptotic Statistics (1998), Cambridge University Press: Cambridge University Press New York · Zbl 0910.62001
[25] Varin, C.; Reid, N.; Firth, D., An overview of composite likelihood methods, Statist. Sinica, 21, 5-42 (2011) · Zbl 1534.62022
[26] Zeger, S. L., A regression model for time series of counts, Biometrika, 75, 621-629 (1988) · Zbl 0653.62064
[27] Zhu, F., Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models, J. Math. Anal. Appl., 389, 1, 58-71 (2012) · Zbl 1232.62120
[28] Zhu, F., Modeling time series of counts with COM-Poisson INGARCH models, Math. Comput. Modelling, 56, 9, 191-203 (2012) · Zbl 1255.91373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.