×

Zero-dimensional Gorenstein algebras with the action of the symmetric group. (English) Zbl 1173.13005

For \(K\) an algebraically closed field of characteristic \(0\), let \(A=A\left( n,k\right) =K\left[ x_{1},\dots,x_{k}\right] /\left( x_{1}^{n},\dots ,x_{k}^{n}\right) .\) Then \(A\cong\left( K^{n}\right) ^{\otimes k}\) as \(\text{GL}\left( n\right) \times S_{k}\)-modules (here \(S_{k}\) is the symmetric group, acting via permutation of variables). The element \(l:=x_{1}+\cdots+x_{k}\in A\) is a strong Lefschetz element. The ring of invariants under \(G:=S_{k}\) is shown to be \(A^G=K[e_1,\dots,e_k] /(p_n,p_{n+1},\dots,p_{n+k-1})\), where \(e_{d}\) is the elementary symmetric polynomial of degree \(d\) and \(p_{d}=x_{1}^{d}+\cdots+x_{k}^{d}.\;\)The Hilbert series of \(A^{G}\) is quickly derived, and this series shows that \(\dim A^{G}=\binom{n+k-1}{k}.\)
Let \(\lambda=\left( k_{1},\dots,k_{r}\right) \vdash k,\) \(r\leq n\) be a partition of \(k,\) and let \(Y^{\lambda}\left( A\right) \) be the Young summetrizer corresponding to \(\lambda.\)Then the Hilbert series of \(Y^{\lambda }\left( A\right) \) is described as a graded subspace of \(A.\) Let \(W^{\lambda}\) be an irreducible \(\text{GL}\left( n\right) \)-module corresponding to \(\lambda.\) Let \(\phi^{\lambda}:\text{GL}\left( n\right) \rightarrow\text *{GL}\left( W^{\lambda}\right) \) be the corresponding irreducible representation of \(\text{GL}\left( n\right) .\) For any \(a\in K\) let \(J\left( a,n\right) \) be the usual \(n\times n\) Jordan block. Then the Jordan canonical form of \(\phi^{\lambda }\left( J\left( a,n\right) \right) \) is given, described in terms of the dual Hilbert series.

MSC:

13A50 Actions of groups on commutative rings; invariant theory

References:

[1] W. FULTON, Young Tableaux, London Mathematical Society Student Text 35, Cambridge University Press, 1997. Zbl0878.14034 MR1464693 · Zbl 0878.14034
[2] R. GOODMAN - N. R. WALLACH, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998. Zbl0901.22001 MR1606831 · Zbl 0901.22001
[3] T. HARIMA - J. WATANABE, The finite free extension of an Artinian K-algebra with the strong Lefschetz property, Rend. Sem. Mat. Univ. Padova, 110 (2003), pp. 119-146. Zbl1150.13305 MR2033004 · Zbl 1150.13305
[4] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0254.17004 MR323842 · Zbl 0254.17004
[5] V. G. KAC, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990. Zbl0716.17022 MR1104219 · Zbl 0716.17022
[6] I. G. MACDONALD, Symmetric functions and Hall Polynomials, 2nd ed., Oxford Science Publications, London, 1995. Zbl0824.05059 MR1354144 · Zbl 0824.05059
[7] T. MAENO, Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial, Comm. Algebra, 35 (2007), pp. 1307-1321. Zbl1125.20001 MR2313669 · Zbl 1125.20001 · doi:10.1080/00927870601142371
[8] T. TERASOMA - H. -F. YAMADA, Higher Specht polynomials for the symmetric group, Proc. Japan Acad., 69 (1993), pp. 41-44. Zbl0811.20011 MR1210951 · Zbl 0811.20011 · doi:10.3792/pjaa.69.41
[9] J. WATANABE, The Dilworth number of Artinian rings and finite posets with rank function, Adv. Stud. Pure Math., 11 (1987), pp. 303-312. Zbl0648.13010 MR951211 · Zbl 0648.13010
[10] J. WATANABE, m-full ideals, Nagoya Math. J., 106 (1987), pp. 101-111. Zbl0623.13012 MR894414 · Zbl 0623.13012
[11] H. WEYL, Classical groups, their invariants and representations, 2nd Edition, Princeton, 1946. Zbl1024.20502 MR1488158 · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.