×

Matrix factorizations of the discriminant of \(S_n\). (English) Zbl 07852630

Let \(k\) be a field and let \(f \in k[x]\). The classical discriminant \(D(f)\) of \(f\) detects whether \(f\) has a multiple root. In general, an explicit formula for \(D(f)\) consists of many monomial terms and several compact determinantal formulae are known, that is, \(D(f)\) can be written as determinant of a matrix with entries polynomials in the coefficients of \(f\).
In this paper, the authors interpret the classical discriminant as the discriminant of the reflection group \(S_{n}\) acting on \(k^{n}\). Let \(G \leq \mathrm{GL}_{n}(k)\) be any finite reflection group acting on the vector space \(k^{n}\), then \(G\) also acts on \(S=\mathrm{Sym}_{k}(k^{n})\). Let \(R=S^{G}\) be the invariant ring under the group action, \(\mathcal{A}(G)\) the reflection arrangement in \(k^{n}\) and \(V(\Delta)\) the discriminant in the (smooth) quotient space \(k^{n}/G\). The hypersurface \(V(\Delta)\) is given by the reduced polynomial \(\Delta \in R\) and is the projection of \(\mathcal{A}(G)\) onto the quotient. Moreover, if \(G=S_{n}\) and \(k=\mathbb{C}\), it is well-known that \(V(\Delta)\) is isomorphic to the classical discriminant \(V(D (f))\), where \(f\) is a polynomial of degree \(n\).
In this paper, the authors use higher Specht polynomials to construct matrix factorizations of the discriminant of this group action: these matrix factorizations are indexed by partitions of \(n\) and respect the decomposition of the coinvariant algebra into isotypical components. The maximal Cohen-Macaulay modules associated to these matrix factorizations give rise to a non-commutative resolution of the discriminant and they correspond to the nontrivial irreducible representations of \(S_{n}\). All such constructions are implemented in Macaulay2. The authors also discuss extensions of these results to Young subgroups of \(S_{n}\) and they indicate how to generalize them to the reflection groups \(G(m,1,n)\).

MSC:

20C30 Representations of finite symmetric groups
05E10 Combinatorial aspects of representation theory
13C14 Cohen-Macaulay modules
20F55 Reflection and Coxeter groups (group-theoretic aspects)
51F15 Reflection groups, reflection geometries
20-08 Computational methods for problems pertaining to group theory

References:

[1] Ariki, Susumu; Koike, Kazuhiko, A Hecke algebra of \((\mathbb{Z} / r \mathbb{Z}) \wr S_n\) and construction of its irreducible representations, Adv. Math., 106, 2, 216-243, 1994 · Zbl 0840.20007
[2] Ariki, Susumu; Terasoma, Tomohide; Yamada, Hiro-Fumi, Higher Specht polynomials, Hiroshima Math. J., 27, 1, 177-188, 1997 · Zbl 0886.20009
[3] Arnol’d, V. I., Normal forms of functions near degenerate critical points, the Weyl groups \(A_k, D_k, E_k\) and Lagrangian singularities, Funkc. Anal. Prilož., 6, 4, 3-25, 1972
[4] Arnol’d, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N., The classification of critical points, caustics and wave fronts, (Singularities of Differentiable Maps. Vol. I. Singularities of Differentiable Maps. Vol. I, Monographs in Mathematics, vol. 82, 1985, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA), Translated from the Russian by Ian Porteous and Mark Reynolds · Zbl 0554.58001
[5] Bourbaki, Nicolas, Éléments de mathématique, (Groupes et Algèbres de Lie. Chapitres 4, 5 et 6, 1981, Masson: Masson Paris) · Zbl 1100.03002
[6] Buchweitz, R.-O., From platonic solids to preprojective algebras via the McKay correspondence, Oberwolfach Jahresber., 18-28, 2012
[7] Buchweitz, Ragnar-Olaf; Ebeling, Wolfgang; von Bothmer, Hans-Christian Graf, Low-dimensional singularities with free divisors as discriminants, J. Algebraic Geom., 18, 2, 371-406, 2009 · Zbl 1167.14004
[8] Buchweitz, Ragnar-Olaf; Faber, Eleonore; Ingalls, Colin, Noncommutative resolutions of discriminants, (Representations of Algebras. Representations of Algebras, Contemp. Math., vol. 705, 2018, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 37-52, ©2018 · Zbl 1401.14079
[9] Buchweitz, Ragnar-Olaf; Faber, Eleonore; Ingalls, Colin, A McKay correspondence for reflection groups, Duke Math. J., 169, 4, 599-669, 2020 · Zbl 1451.14043
[10] Chevalley, Claude, Invariants of finite groups generated by reflections, Am. J. Math., 77, 4, 778-782, 1955 · Zbl 0065.26103
[11] Debus, Sebastian; Moustrou, Philippe; Riener, Cordian; Verdure, Hughes, The poset of Specht ideals for hyperoctahedral groups, Algebr. Comb., 6, 6, 1593-1619, 2023 · Zbl 1537.13040
[12] Eisenbud, David, Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., 260, 1, 35-64, 1980 · Zbl 0444.13006
[13] Faber, Eleonore; Ingalls, Colin; May, Simon; Talarico, Marco, Package and code for generating example in article, Available at
[14] Fulton, William, Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, 1996, Cambridge University Press · Zbl 0878.14034
[15] Fulton, William; Harris, Joe, Representation Theory, Graduate Texts in Mathematics, vol. 129, 1991, Springer-Verlag: Springer-Verlag New York, A first course, Readings in Mathematics · Zbl 0744.22001
[16] Garsia, A. M.; Procesi, C., On certain graded \(S_n\)-modules and the q-Kostka polynomials, Adv. Math., 94, 1, 82-138, 1992 · Zbl 0797.20012
[17] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, Resultants and Multidimensional Determinants, 2008, Modern Birkhäuser Classics. Birkhäuser Boston, Inc.: Modern Birkhäuser Classics. Birkhäuser Boston, Inc. Boston, MA, Reprint of the 1994 edition · Zbl 1138.14001
[18] Gillespie, M.; Rhoades, B., Higher Specht bases for generalizations of the coinvariant ring, Ann. Comb., 25, 1, 51-77, 2021 · Zbl 1472.05151
[19] Grayson, Daniel R.; Stillman, Michael E., Macaulay2, a software system for research in algebraic geometry, Available at
[20] Hovinen, B., Matrix factorizations of the classical determinant, 2009, University of Toronto, Phd thesis
[21] Humphreys, James E., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29, 1990, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0725.20028
[22] James, G. D., The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, vol. 682, 1978, Springer: Springer Berlin · Zbl 0393.20009
[23] Leuschke, Graham J.; Wiegand, Roger, Cohen-Macaulay Representations, Mathematical Surveys and Monographs, vol. 181, 2012, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1252.13001
[24] May, Simon, Non-commutative resolutions for the discriminant of the complex reflection group \(G(m, p, 2)\), Algebr. Represent. Theory, 26, 6, 2841-2876, 2023 · Zbl 1540.14003
[25] Morita, H.; Yamada, H.-F., Higher Specht polynomials for the complex reflection group \(G(r, p, n)\), Hokkaido Math. J., 27, 3, 505-515, 1998 · Zbl 0919.20027
[26] Orlik, Peter; Terao, Hiroaki, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, 1992, Springer-Verlag: Springer-Verlag Berlin · Zbl 0757.55001
[27] Raicu, Claudiu; Eisenbud, David; Stillman, Mike, PushForward: push forwards of finite ring maps. Version 0.6, A Macaulay2 package available at
[28] Saito, Kyoji, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 27, 2, 265-291, 1980 · Zbl 0496.32007
[29] Saito, Kyoji, On a linear structure of the quotient variety by a finite reflexion group, Publ. Res. Inst. Math. Sci., 29, 4, 535-579, 1993 · Zbl 0828.15002
[30] Shephard, G. C.; Todd, J. A., Finite unitary reflection groups, Can. J. Math., 6, 274-304, 1954 · Zbl 0055.14305
[31] Spechtmodule, Jonathan Niño, Available at
[32] Stanley, Richard P., Relative invariants of finite groups generated by pseudoreflections, J. Algebra, 49, 1, 134-148, 1977 · Zbl 0383.20029
[33] Stembridge, John R., Orthogonal sets of Young symmetrizers, Adv. Appl. Math., 46, 1-4, 576-582, 2011 · Zbl 1227.05268
[34] Terasoma, Tomohide; Yamada, Hirofumi, Higher Specht polynomials for the symmetric group, Proc. Jpn. Acad., Ser. A, Math. Sci., 69, 2, 41-44, 1993 · Zbl 0811.20011
[35] Yoshino, Yuji, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society Lecture Note Series, vol. 146, 1990, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0745.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.