×

2D quaternionic time-harmonic Maxwell system in elliptic coordinates. (English) Zbl 1319.35253

Summary: In this paper, we consider the 2D time-harmonic Maxwell equations in elliptic coordinates through certain quaternionic perturbed Dirac operator. The main goal is aimed to analyze an electromagnetic Dirichlet problem for a curvilinear polygon with rectifiable boundary in \(\mathbb{R}^2\). In addition, we provide an integral representation formula for electromagnetic fields that resembles the classical Stratton-Chu formula. The importance of the problem for applications makes it worthy of consideration.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35Q40 PDEs in connection with quantum mechanics
78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] R. Abreu Blaya, R. Ávila Ávila, J. Bory Reyes, Boundary value problems for Dirac operators and Maxwell’s equations in fractal domains. Math. Meth. Appl. Sci. (2014). doi:10.1002/mma.3073 · Zbl 1307.30086
[2] G. B. Arfken, H. J. Weber, F. H. Harris, Mathematical Methods for Physicists. Academic Press. Elsevier, seventh edition, 2013. · Zbl 1239.00005
[3] H. T. Anastassiu, P. E. Atlamazoglou, D. I. Kaklamani, Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Trans. Antennas and Propagation 51, no. 8 (2003), 2130-2136. · Zbl 1368.78006
[4] H. Ammari, G. Bao, A. W. Wood, An integral equation method for the electromagnetic scattering from cavities. Math. Methods Appl. Sci. 23, no. 12 (2000), 1057-1072. · Zbl 0991.78012
[5] Colton D., Kress R.: Integral equations methods in scattering theory. N.Y., John Wiley and Sons (1983) · Zbl 0522.35001
[6] Colton D., Kress R.: it Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1992) · Zbl 0760.35053 · doi:10.1007/978-3-662-02835-3
[7] M. Costabel, M. Dauge, D. Martin, G. Vial, Weighted regularization of Maxwell equations: computations in curvilinear polygons (2003). Brezzi, Franco (ed.) et al., Numerical mathematics and advanced applications. Proceedings of ENUMATH 2001, the 4th European conference, Ischia, July 2001. Berlin: Springer. 273-280. · Zbl 1057.78011
[8] W. Greiner, Relativistic quantum mechanics. Springer-Verlag, 1990. · Zbl 0718.35078
[9] Gerus O., Shapiro M.: On the boundary values of a quaternionic generalization of the Cauchy type integral in \[{\mathbb{R}^2}\] R2 for rectifiable curves. J. Nat. Geom. 24(1-2), 120-136 (2003) · Zbl 1246.30082
[10] O. Gerus, B. Schneider, M. Shapiro, On boundary properties of a-hyperholomorphic functions in domains of \[{\mathbb{R}^2}\] R2with the piece-wise Liapunov boundary. Progress in Analysis, Proceedings of 3rd International ISAAC Congress, Volume 1, Berlin, Germany, 20 - 25 August 2001. H. Begehr, R. Gilbert and M. Wong (Eds.) World Scientific (2003), 375-382. · Zbl 1284.30047
[11] O. Gerus, M. Shapiro, On a Cauchy-type integral related to the Helmholtz operator in the plane. Bol. Soc. Mat. Mexicana (3), Volume 10 (2004), 63-82. · Zbl 1069.30077
[12] K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley and Sons Publ., 1997. · Zbl 0897.30023
[13] K. Güerlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel, 2008. · Zbl 1132.30001
[14] K. Gürlebeck, M. Shapiro, W. Sprössig, On a Teodorescu transform for a class of metaharmonic functions. J. Nat. Geom. 21, no. 1-2 (2002), 17-38. · Zbl 0999.30032
[15] A. Hanyga (1996). Asymptotic diffraction theory and its application to edgeand- vertex diffraction. Z. Angew. Math. Mech. 76, Suppl. 5 (2002), 193-194. · Zbl 0925.35153
[16] K. Imaeda, A new formulation of classical electrodynamics. Nuovo Cimento, v. 32 B, No. 1 (1976), 138-162.
[17] Kravchenko V., Shapiro M.: Quaternionic time-harmonic Maxwell operator. J. Phys. A: Math. Gen. 28, 5017-5031 (1995) · Zbl 0869.35099 · doi:10.1088/0305-4470/28/17/030
[18] V. V. Kravchenko, On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields. Deposited in Ukr INTEI, 29.12, No. 2073-Uk-92 (1992), 18pp.
[19] V. Kravchenko, M. Shapiro, Integral representations for spatial models of mathematical physics. Pitman Res. Notes in Math. Ser. 351. Longman, Harlow (1996), pp. vi+247. · Zbl 0872.35001
[20] V. V. Kravchenko, Applied quaternionic analysis. Maxwell’s system and Dirac’s equation. Functional-analytic and complex methods, their interactions, and applications to partial differential equations. (Graz, 2001), (2001), 143-160, World Sci. Publ., River Edge, NJ. · Zbl 1027.30070
[21] V. V. Kravchenko, Applied quaternionic analysis. Research and Exposition in Mathematics (2003), 28. Heldermann Verlag, Lemgo. · Zbl 1014.78003
[22] N. Morita, N. Kumagai, J. R. Mautz, Integral equation methods for electromagnetics. Translated from the 1987 Japanese original. Translation revised by Mautz. The Artech House Antennas and Propagation Library. Artech House, Inc., Boston, MA, 1990. · Zbl 0865.65091
[23] S. Langdon, M. Mokgolele, S. N. Chandler-Wilde, High frequency scattering by convex curvilinear polygons. J. Comput. Appl. Math. 234, no. 6 (2010), 2020-2026. · Zbl 1350.76041
[24] D. Li, J.F. Mao, A Koch-like sided fractal bow-tie dipole antenna. Antennas and Propagation, IEEE Transactions on. Vol. 60, no 5 (2012), 2242-2251. · Zbl 1369.78462
[25] M. E. Luna-Elizarrarás, R. M. Rodríguez-Dagnino, M. Shapiro, On a version of quaternionic function theory related to Mathieu functions. Simos, Theodore E. (ed.) et al., Numerical analysis and applied mathematics. International conference of numerical analysis and applied mathematics, Corfu, Greece (2007), 16-20 September 2007. Melville, NY: American Institute of Physics (AIP). AIP Conference Proceedings 936, 761-763. · Zbl 1152.30334
[26] M. E. Luna-Elizarrarás, M. A. Pérez-de la Rosa, R. M. Rodríguez-Dagnino, M. Shapiro, On quaternionic analysis for the Schrödinger operator with a particular potential and its relation with the Mathieu functions. Math. Methods Appl. Sci. 36, No. 9 (2013), 1080-1094. · Zbl 1269.30056
[27] R. Magnanini, F. Santosa, Wave propagation in a 2-D optical waveguide. SIAM J. Appl. Math. 61, no. 4(2000/01), 1237-1252. · Zbl 0973.78018
[28] A.D. Moskovciakova, M.D. Storzer, A. Beyer, Direct Magnetic problems solved by quaternion analog of 3-D Cauchy-Riemann Systems. Archiv für Elektrotechnik, vol. 76, no 6 (1993), 417-421.
[29] R. Rocha-Chá vez, M. Shapiro, L. Tovar, On the Hilbert operator for a- hyperholomorphic function theory in \[{\mathbb{R}^2}\] R2. Complex Variables Theory Appl. 43, No. 1 (2000), 1-28. · Zbl 1026.44006
[30] Schneider B., Kavaklioglu Ö.: Poincaré-Bertrand formula on a piecewise Liapunov curve in two-dimensional. Appl. Math. Comput. 202, 814-819 (2008) · Zbl 1153.26306 · doi:10.1016/j.amc.2008.03.026
[31] Shapiro M., Tovar L.: Two-dimensional Helmholtz operator and its hyperholomorphic solutions. J. Nat. Geom. 11, 77-100 (1997) · Zbl 1076.30523
[32] M. Shapiro, L. Tovar, On a class of integral representations related to the Twodimensional Helmholtz operator. Contemporary Mathematics, vol. 212 (1998), 229-244. · Zbl 0907.30047
[33] W. Sprössig, Quaternionic analysis and Maxwell’s equations. CUBO vol. 7, No. 2 (2005), 57-67. · Zbl 1100.35104
[34] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, N.J., 1970. · Zbl 0207.13501
[35] Stratton J.A., Chu L.J.: Diffraction theory of electromagnetic waves. Phys. Rev., II. Ser. 56, 99-107 (1939) · JFM 65.1511.01
[36] G. Uhlmann, T. Zhou. Inverse Electromagnetic Problems. www.math.washington.edu/gunther/publications/.../InvEMprob3.pdf
[37] Vaz J. Jr., Rodrigues W. Jr.: Equivalence of Dirac and Maxwell equations and quantum mechanics. Internat. J. Theoret. Phys. 32, no. 6, 945-959 (1993) · Zbl 0788.53072 · doi:10.1007/BF01215301
[38] V. S. Vladimirov. it Equations of Mathematical Physics. Translated from the Russian first edition. Marcel Dekker, Inc., N.A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press, Cambridge, second edition, 1995.
[39] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press, Cambridge, second edition, 1995. · Zbl 0849.33001
[40] A. W. Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane. J. Comput. Phys. 215, no. 2 (2006), 630-641. · Zbl 1100.78014
[41] M. S. Zhdanov. Integral transforms in geophysics. Translated from the Russian by Tamara M. Pyankova. Springer-Verlag, Berlin, 1988. · Zbl 0788.53072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.