×

Scale invariance and related properties of \(q\)-Gaussian systems. (English) Zbl 1203.82005

Summary: We advance scale-invariance arguments for systems that are governed (or approximated) by a \(q\)-Gaussian distribution, i.e., a power law distribution with exponent \(Q=1/(1 - q); Q\in \mathbb R\). The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to \(q\)-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis’ parameter \(q\) is revisited. A kinetic application is also provided.

MSC:

82B03 Foundations of equilibrium statistical mechanics

References:

[1] Scroeder, M., Fractals, Chaos, Power Laws (1991), Freeman: Freeman NY · Zbl 0758.58001
[2] Plastino, A.; Plastino, A. R., Braz. J. Phys., 29, 50 (1999)
[3] Katz, A., Principles of Statistical Mechanics, The Information Theory Approach (1967), Freeman: Freeman San Francisco
[4] Vignat, C.; Plastino, A.; Plastino, A. R., Nuovo Cimento B, 120, 951 (2005)
[5] Kaniadakis, G.; Lissia, M.; Rapisarda, A., Nonextensive Statistical Mechanics and Physical Applications. Nonextensive Statistical Mechanics and Physical Applications, Physica A, 305 (2002), (Special issue), and references therein
[6] Buchanan, M., New Scientist, 187, 34 (2005)
[7] Vignat, C.; Hero, A. O.; Costa, J. A., Physica A, 340, 147 (2004)
[8] Beck, C.; Cohen, E. G.D., Physica A, 322, 267 (2003) · Zbl 1038.82049
[9] Beck, C., Contin. Mech. Thermodyn., 16, 293 (2004) · Zbl 1116.82312
[10] Beck, C., Phys. Rev. Lett., 87, 180601 (2001)
[11] Beck, C.; Cohen, E. G.D., Physica A, 344, 393 (2004)
[12] Beck, C., Physica A, 342, 139 (2004)
[13] Beck, C., Physica D, 193, 195 (2004) · Zbl 1062.82026
[14] Touchette, H.; Beck, C., Phys. Rev. E, 71, 016131 (2005)
[15] Lindsay, R. B.; Margenau, H., Foundations of Physics (1957), Dover: Dover NY · JFM 62.1501.01
[16] Feller, W., An Introduction to Probability Theory and Its Applications, vol. II (1970), John Wiley and Sons · Zbl 0138.10207
[17] Vignat, C.; Plastino, A., Phys. Lett. A, 343, 411 (2005) · Zbl 1194.82004
[18] Umarov, S.; Steinberg, S.; Tsallis, C.
[19] Mendes, R. S.; Tsallis, C., Phys. Lett. A, 285, 273 (2001) · Zbl 0969.82528
[20] Frieden, B. R., Physics from Fisher Information (1998), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, England · Zbl 0881.60016
[21] Fang, K. T.; Kotz, S.; Ng, K. W., Symmetric Multivariate and Related Distributions (1990), Chapman & Hall: Chapman & Hall London/New York · Zbl 0699.62048
[22] Dunkel, J.; Hänggi, P.
[23] Chu, K. C., IEEE Trans. Automat. Control, 18, 499 (1973) · Zbl 0263.93049
[24] Plastino, A. R.; Plastino, A., Phys. Lett. A, 193, 140 (1994) · Zbl 0959.82500
[25] Liang, J.-J.; Bentler, P. M., Statist. Probab. Lett., 40, 155 (1998) · Zbl 0935.62062
[26] Bening, V. E.; Korolev, V. Yu., Theory Probab. Appl., 49, 377 (2005) · Zbl 1089.62001
[27] Tsilevich, N.; Vershik, A.; Yor, M., J. Funct. Anal., 185, 274 (2001) · Zbl 0990.60053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.