×

Stochastic orderings of multivariate elliptical distributions. (English) Zbl 1476.60043

Summary: For two \(n\)-dimensional elliptical random vectors X and Y, we establish an identity for \(\mathbb{E}[f(\mathbf{Y})]-\mathbb{E}[f(\mathbf{X})]\), where \(f:\mathbb{R}^n\rightarrow\mathbb{R}\) satisfies some regularity conditions. Using this identity we provide a unified method to derive sufficient and necessary conditions for classifying multivariate elliptical random vectors according to several main integral stochastic orders. As a consequence we obtain new inequalities by applying the method to multivariate elliptical distributions. The results generalize the corresponding ones for multivariate normal random vectors in the literature.

MSC:

60E15 Inequalities; stochastic orderings

Software:

QRM

References:

[1] Abdous, B., Genest, C. and Rémillard, B. (2005). Dependence properties of meta-elliptical distributions. In Statistical Modeling and Analysis for Complex Data Problems, eds. P. Duschene and B. Rémillard, Springer, New York, pp. 1-15. · Zbl 1071.62500
[2] Arlotto, A. and Scarsini, M. (2009). Hessian orders and multinormal distributions. J. Multivar. Anal.100, 2324-2330. · Zbl 1177.60020
[3] Bäuerle, N. (1997). Inequalities for stochastic models via supermodular orderings. Commun. Statist. Stoch. Models13, 181 (1997). · Zbl 0871.60015
[4] Bäuerle, N. abd Bayraktar, E. (2014). A note on applications of stochastic ordering to control problems in insurance and finance. Stochastics, 86, 330-340. · Zbl 1314.60104
[5] Bäuerle, N. and Müller, A. (2006). Stochastic orders and risk measures: Consistency and bounds. Insurance Math. Econom.38, 132-148. · Zbl 1105.60017
[6] Block, H. W. and Sampson, A. R. (1988). Conditionally ordered distributions. J. Multivar. Anal.27, 91-104. · Zbl 0649.62042
[7] Cambanis, S., Huang, S. and Simons, G. (1981). On the theory of elliptically contoured distributions. J. Multivar. Anal.11, 365-385. · Zbl 0469.60019
[8] Cal, D. and Carcamo, J. (2006). Stochastic orders and majorization of mean order statistics. J. Appl. Prob.43, 704-712. · Zbl 1127.62046
[9] Carter, M. (2001). Foundations of Mathematical Economics. MIT Press, Cambridge, MA. · Zbl 1047.91001
[10] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Prob. Theory Relat. Fields162, 47-70. · Zbl 1319.60072
[11] Christofides, T. C. and Vaggelatou, E. (2004). A connection between supermodular ordering and positive/negative association. J. Multivar. Anal.88, 138-151. · Zbl 1034.60016
[12] Das Gupta, S., Eaton, M. L., Olkin, I., Perlman, M. D., Savage, L. J. and Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. In: Proc. Sixth Berkeley Symp. Prob. Statist., Vol. 2, University of California Press, Berkeley, CA, pp. 241-265. · Zbl 0253.60021
[13] Davidov, O. and Peddada, S. (2013). The linear stochastic order and directed inference for multivariate ordered distributions. Ann. Statist.41, 1-40. · Zbl 1266.60029
[14] Denuit, M. and Müller, A. (2002). Smooth generators of integral stochastic orders. Ann. Appl. Prob.12, 1174-1184. · Zbl 1065.60015
[15] Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2005). Actuarial Theory for Dependent Risks: Measures, Orders and Models. John Wiley, New York.
[16] Ding, Y. and Zhang, X. (2004). Some stochastic orders of Kotz-type distributions. Statist. Prob. Lett.69, 389-396. · Zbl 1066.60022
[17] El Karoui, N. (2009). Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond. Ann. Appl. Prob.19, 2362-2405. · Zbl 1255.62156
[18] Fábián, C. I., Mitra, G. and Roman, D. (2011). Processing second-order stochastic dominance models using cutting-plane representations. Math. Program.130, 33-57. · Zbl 1229.90108
[19] Fang, K. T. and Liang, J. J. (1989). Inequalities for the partial sums of elliptical order statistics related to genetic selection. Canad. J. Statist.17, 439-446. · Zbl 0721.62050
[20] Fang, K. W., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. Chapman & Hall, London. · Zbl 0699.62048
[21] Fill, J. A. and Kahn, J. (2013). Comparison inequalities and fastest-mixing Markov chains. Ann. Appl. Prob.23, 1778-1816. · Zbl 1288.60089
[22] Goovaerts, M. J. and Dhaene, J. (1999). Supermodular ordering and stochastic annuities. Insurance Math. Econom.24, 281-290. · Zbl 0942.60008
[23] Gupta, A. K., Varga, T. and Bodnar, T. (2013). Elliptically Contoured Models in Statistics and Portfolio Theory, 2nd ed. Springer, New York. · Zbl 1306.62028
[24] Hazra, N. K., Kuiti, M. R., Finkelstein, M. and Nanda, A. K. (2017). On stochastic comparisons of maximum order statistics from the location-scale family of distributions. J. Multivar. Anal.160, 31-41. · Zbl 1381.60062
[25] Houdré, C., Pérez-Abreu, V. and Surgailis, D. (1998). Interpolation, correlation identities, and inequalities for infinitely divisible variables. J. Fourier Anal. Appl.4, 651-668. · Zbl 0924.60006
[26] Hu, T. Z. and Zhuang, W. W. (2006). Stochastic orderings between p-spacings of generalized order statistics from two samples. Prob. Eng. Inf. Sci.20, 465-479. · Zbl 1122.60016
[27] Joag-Dev, K., Perlman, M. and Pitt, L. (1983). Association of normal random variables and Slepian’s inequality. Ann. Probab.11, 451-455. · Zbl 0509.62043
[28] Joe, H. (1990). Multivariate concordance. J. Multivar. Anal.35, 12-30. · Zbl 0741.62061
[29] Kelker, D. (1970). Distribution theory of spherical distributions and location-scale parameter generalization. Sankhyā32, 419-430. · Zbl 0223.60008
[30] Landsman, Z. and Tsanakas, A. (2006). Stochastic ordering of bivariate elliptical distributions. Statist. Prob. Lett.76, 488-494. · Zbl 1085.62059
[31] Li, W. V. and Shao, Q. M. (2002). A normal comparison inequality and its applications. Prob. Theory Relat. Fields122, 494-508. · Zbl 1004.60031
[32] López-Díaz, M. C., López-Díaz, M. and Martínez-Fernández, S. (2018). A stochastic order for the analysis of investments affected by the time value of money. Insurance Math. Econom.83, 75-82. · Zbl 1417.91466
[33] Marshall, A. and Olkin, I. (2011). Inequalities: Theory of Majorization and its Applications, 2nd ed. Springer, New York, (2011). · Zbl 1219.26003
[34] Mcneil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press. · Zbl 1337.91003
[35] Meester, L. E. and Shanthikumar, J. G. (1993). Regularity of stochastic processes. Prob. Eng. Inf. Sci.7, 343-360.
[36] Mosler, K. C. (1982). Entscheidungsregeln bei Risiko: Multivariate stochastische Dominanz. Lecture Notes in Economics and Mathematical Systems, Vol. 204, Springer, Berlin.. · Zbl 0497.62009
[37] Müller, A. (1997a). Stop-loss order for portfolios of dependent risks. Insurance Math. Econom.21, 219-223. · Zbl 0894.90022
[38] Müller, A. (1997b). Stochastic orders generated by integrals: A unified study. Adv. Appl. Prob.29, 414-428. · Zbl 0890.60015
[39] Müller, A. (2001). Stochastic ordering of multivariate normal distributions. Ann. Inst. Statist. Math.53, 567-575. · Zbl 0989.62031
[40] Müller, A and Scarsini, M. (2000). Some remarks on the supermodular order. J. Multivar. Anal.73, 107-119. · Zbl 0958.60009
[41] Müller, A and Scarsini, M. (2006). Stochastic order relations and lattices of probability measures. SIAM J. Optim.16, 1024-1043. · Zbl 1102.60017
[42] Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester. · Zbl 0999.60002
[43] Pan, X., Qiu, G. and Hu, T. (2016). Stochastic orderings for elliptical random vectors. J. Multivar. Anal.148, 83-88. · Zbl 1338.60060
[44] Rüschendorf, L. (1980). Inequalities for the expectation of \(\Delta \)-monotone functions. Z. Wahrscheinlichkeitsth.54, 341-349. · Zbl 0441.60013
[45] Scarsini, M. (1998). Multivariate convex orderings, dependence, and stochastic equality. J. Appl. Prob.35, 93-103. · Zbl 0906.60020
[46] Sha, X. Y. Xu, Z. S. and Yin, C. C. (2019). Elliptical distribution-based weight-determining method for ordered weighted averaging operators. Internat. J. Intel. Syst.34, 858-877.
[47] Shaked, M. and Shanthikumar, J. G. (1990). Parametric stochastic convexity and concavity of stochastic processes. Ann. Inst. Statist. Math.42, 509-531. · Zbl 0727.60073
[48] Shaked, M. and Shanthikumar, J. G. (1997). Supermodular stochastic orders and positive dependence of random vectors. J. Multivar. Anal.61, 86-101. · Zbl 0883.60016
[49] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York. · Zbl 0806.62009
[50] Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions. Academic Press, New York. · Zbl 0455.60003
[51] Topkis, D. M. (1988). Supermodularity and Complementarity. Princeton University Press.
[52] Whitt, W. (1986). Stochastic comparisons for non-Markov processes. Math. Operat. Res.11, 608-618. · Zbl 0609.60046
[53] Yan, L. (2009). Comparison inequalities for one-sided normal probabilities. J. Theor. Prob.22, 827-836. · Zbl 1181.60026
[54] Yin, C. C. (2020). A unified treatment of characteristic functions of symmetric multivariate and related distributions. Working paper.
[55] Yin, C. C., Wang, Y. and Sha, X. Y. (2020). A new class of symmetric distributions including the elliptically symmetric logistic. Submitted.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.