×

Efficient procedure to generate generalized Gaussian noise using linear spline tools. (English) Zbl 1474.65028

Summary: In this paper, we propose a simple method to generate generalized Gaussian noises using the inverse transform of cumulative distribution. This inverse is expressible by means of the inverse incomplete Gamma function. Since the implementation of Newton’s method is rather simple, for approximating inverse incomplete Gamma function, we propose a better and new initial value exploiting the close relationship between the incomplete Gamma function and its piecewise linear interpolant. The numerical results highlight that the proposed method simulates well the univariate and bivariate generalized Gaussian noises.

MSC:

65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)
41A15 Spline approximation
41A28 Simultaneous approximation
65D05 Numerical interpolation

Software:

DLMF

References:

[1] B. C. Arnold, E. Castillo, J. M. Sarabia, Multivariate distributions defined in terms of contours, Journal of Statistical Planning and Inference138(12), 4158-4171, 2008. · Zbl 1146.62037
[2] D.H. Bailey, J.M. Borwein, Crandall’s computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series, Applied Mathematics and Computation, Vol268, 462-477, 2015. · Zbl 1410.33013
[3] F. Chapeau-Blondeau, A. Monir, Numerical Evaluation of the LambertWFunction and Application to Generation of Generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, vol.50, 2160-2165, 2002. · Zbl 1369.33022
[4] D. Cho, T. D. Bui, Multivariate statistical modeling for image denoising using wavelet transforms, Signal Processing: Image Communication,20(1), 77-89, 2005.
[5] R.A. DeVore, G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[6] L. Devroye, Random variate generation for multivariate unimodal densities, ACM Transactions on Modeling and Computer Simulation,7, 447-477, 1997. · Zbl 0917.65004
[7] A.R. DiDonato, A. H. Morris, Computation of the incomplete gamma function ratios and their inverse, ACM Trans. Math. Software, vol.12(4), 377-393, 1986. · Zbl 0623.65016
[8] M. Dohler, M. Arndt, Inverse incomplete gamma function and its application, Electronics Letters, vol.42No.1, pp. 6-35, 2006.
[9] K. T. Fang, S. Kotz, and K. W. Ng , Symmetric Multivariate and Related Distributions, London: Chapman & Hall, 1987. · Zbl 0699.62048
[10] K. T. Fang, S. Kotz, and K. W. Ng , Symmetric Multivariate and Related Distributions, Monographs on Statistics and Applied Probability, 36, Chapman & Hall, New York, 1990. · Zbl 0699.62048
[11] A. Gil, J. Segura, and N. M. Temme, Numerical methods for special functions. SIAM, Philadelphia, PA, 2007. · Zbl 1144.65016
[12] A. Gil, J. Segura, N. M. Temme, Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios, SIAM J. Scientific Computing, vol.34 (6), A2965-A2981, 2012. · Zbl 1259.33006
[13] E. G´omez, M.A. G´omez-Villegas and J.M. Mar´ın Gomez, A multivariate gener- alization of the power exponential family of distributions, Commun. Statist.-Theory and methods,27 (3), 589-600, 1998. · Zbl 0895.62053
[14] M. E. Johnson, Multivariate Statistical Simulation. Wiles Series in Probability and Mathematical Statistics, New York, 1987. · Zbl 0604.62056
[15] H. Kaneko, Y. Xu, Gauss-Type Quadratures for Weakly Singular Integrals and their Application to Fredholm Integral Equations of the Second Kind, Mathematics of Computation, vol. 62, no. 206, 739-753, 1994. · Zbl 0799.65023
[16] D. Kelker, Distribution Theory of Spherical Distributions and Location-Scale Parameter Generalization, Sankhya: The Indian Journal of Statistics,32(4), 419-430, 1970. · Zbl 0223.60008
[17] T. Luu, Efficient and accurate parallel inversion of the Gamma distribution, SIAM J. Sci. Comput.,37(1), C122-C141, 2015. · Zbl 1315.65005
[18] A. Monir, Contribution ‘a la mod´elisation et ‘a la synth‘ese des signaux al´eatoires: signaux non gaussiens, signaux ‘a corr´elation non exponentielle, th‘ese de doctorat, Universit´e d’Angers France, Novembre 2003.
[19] A. Monir, H. Mraoui, Spline approximations of the LambertWfunction and application to simulate generalized Gaussian noise with exponentα= 1/2, Digital Signal Processing, vol. 33, 34-41, 2014.
[20] R. B. Paris, Incomplete gamma and related functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 175-192, 2010.
[21] F. Pascal, L. Bombrun, J.-Y. Tourneret, and Y. Berthoumieu, Parameter estimation for multivariate generalized gaussian distributions, IEEE Transactions on Signal Processing,61 (23), 5960-5971, 2013. · Zbl 1394.62071
[22] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, third ed., Cambridge Univ. Press, Cambridge, 2007. · Zbl 1132.65001
[23] N. Solaro, Random variate generation from Multivariate Exponential Power distribution, Statistica &Applicazioni, vol.II, no. 2, 2004.
[24] E. A. Valdez, A. Chernih, Wang’s capital allocation formula for elliptically contoured distributions, Insurance: Mathematics and Economics,33, 517-532, 2003. A Course of Modern Analysis, Cambridge University Press, Cambridge (1902); Fourth Edition (1965). · Zbl 1103.91375
[25] E.T. Whittaker, G.N. Watson, A Course Modern Analysis, Cambridge University Press, Cambridge (1902), Fourth Edition 1965 · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.