×

Asymptotic distributions for power variations of the solution to the spatially colored stochastic heat equation. (English) Zbl 1486.60084

Summary: Let \(u_{\alpha,d}=\{u_{\alpha,d}(t,x), \quad t \in [0,T], x \in \mathbb{R}^d\}\) be the solution to the stochastic heat equations (SHEs) with spatially colored noise. We study the realized power variations for the process \(u_{\alpha,d}\), in time, having infinite quadratic variation and dimension-dependent Gaussian asymptotic distributions. We use the underlying explicit kernels and spectral/harmonic analysis, yielding temporal central limit theorems for SHEs with spatially colored noise. This work builds on the recent works on delicate analysis of variations of general Gaussian processes and SHEs driven by space-time white noise.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Dalang, R. C., Extending martingale measure stochastic integral with applications to spatially homogeneous s. p. d. e.’s, Electronic Journal of Probability, 4, 1-29 (1999) · Zbl 0922.60056
[2] Balan, R. M.; Tudor, C. A., The stochastic wave equation with fractional noise: a random field approach, Stochastic Processes and Their Applications, 120, 12, 2468-2494 (2010) · Zbl 1202.60095 · doi:10.1016/j.spa.2010.08.006
[3] Conus, D.; Joseph, M.; Khoshnevisan, D.; Shiu, S.-Y., On the chaotic character of the stochastic heat equation, II, Probability Theory and Related Fields, 156, 3-4, 483-533 (2013) · Zbl 1286.60061 · doi:10.1007/s00440-012-0434-3
[4] Foondun, M.; Khoshnevisan, D., On the stochastic heat equation with spatially-colored random forcing, Transactions of the American Mathematical Society, 365, 409-458 (2013) · Zbl 1274.60202
[5] Mueller, C.; Tribe, R., A singular parabolic Anderson model, Electronic Journal of Probability, 9, 98-144 (2004) · Zbl 1071.60055 · doi:10.1214/ejp.v9-189
[6] Rippl, T.; Sturm, A., New results on pathwise uniqueness for the heat equation with colored noise, Electronic Journal of Probability, 18, 1-46 (2013) · Zbl 1411.60100 · doi:10.1214/ejp.v18-2506
[7] Dalang, R. C.; Khoshnevisan, D.; Rassoul-Agha, F., A Minicourse on Stochastic Partial Differential Equations, Lecture Notes Math. (1962), Berlin/Heidelberg, Germany: Springer, Berlin/Heidelberg, Germany
[8] Khoshnevisan, D., Analysis of stochastic partial differential equations, Journal of the American Mathematical Society, 119 (2014) · Zbl 1308.60078 · doi:10.1090/cbms/119
[9] Raluca, M. B.; Tudor, C. A., Stochastic heat equation with multiplicative fractional-colored noise, Journal of Theoretical Probability, 23, 834-870 (2010) · Zbl 1203.60078
[10] Tudor, C. A., Analysis of Variations for Self-Similar Processes-A Stochastic Calculus Approach (2013), Berlin/Heidelberg, Germany: Springer, Berlin/Heidelberg, Germany · Zbl 1308.60004
[11] Bezdek, P., On weak convergence of stochastic heat equation with colored noise, Stochastic Processes and Their Applications, 126, 9, 2860-2875 (2016) · Zbl 1345.60052 · doi:10.1016/j.spa.2016.03.006
[12] Pospíšil, J.; Tribe, R., Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stochastic Analysis and Applications, 25, 593-611 (2007) · Zbl 1118.60030
[13] Swanson, J., Variations of the solution to a stochastic heat equation, Annals of Probability, 35, 2122-2159 (2007) · Zbl 1135.60041 · doi:10.1214/009117907000000196
[14] Tudor, C. A.; Xiao, Y., Sample paths of the solution to the fractional-colored stochastic heat equation, Stochastics and Dynamics, 17, 1 (2017) · Zbl 1355.60086 · doi:10.1142/s0219493717500046
[15] Corcuera, J. M.; Nualart, D.; Woerner, J. H. C., Power variation of some integral fractional processes, Bernoulli, 12, 713-735 (2006) · Zbl 1130.60058
[16] Neuenkirch, A.; Nourdin, I., Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, Journal of Theoretical Probability, 20, 4, 871-899 (2007) · Zbl 1141.60043 · doi:10.1007/s10959-007-0083-0
[17] Nourdin, I., Asymptotic behavior of weighted quardratic cubic variation of fractional Brownian motion, Annals of Probability, 36, 2159-2175 (2008) · Zbl 1155.60010 · doi:10.1214/07-aop385
[18] Dobrushin, R. L.; Major, P., Non-central limit theorems for non-linear functional of Gaussian fields, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50, 1, 27-52 (1979) · Zbl 0397.60034 · doi:10.1007/bf00535673
[19] Taqqu, M. S., Convergence of integrated processes of arbitrary Hermite rank, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50, 1, 53-83 (1979) · Zbl 0397.60028 · doi:10.1007/bf00535674
[20] Breuer, P.; Major, P., Central limit theorems for non-linear functionals of Gaussian fields, Journal of Multivariate Analysis, 13, 3, 425-441 (1983) · Zbl 0518.60023 · doi:10.1016/0047-259x(83)90019-2
[21] Giraitis, L.; Surgailis, D., CLT and other limit theorems for functionals of Gaussian processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 70, 2, 191-212 (1985) · Zbl 0575.60024 · doi:10.1007/bf02451428
[22] Wang, W., Variations of the solution to a fourth order time-fractional stochastic partial integro-differential equation, Stochastics and Partial Differential Equations: Analysis and Computations (2021) · Zbl 1495.35221 · doi:10.1007/s40072-021-00208-8
[23] Wang, W.; Wang, D., Asymptotic distributions for power variations of the solutions to linearized kuramoto-sivashinsky SPDEs in one-to-three dimensions, Symmetry, 13, 1, 73 (2021) · doi:10.3390/sym13010073
[24] Pearson, K.; Young, A. W., On the product-moments of various orders of the normal correlation surface of two variates, Biometrika, 12, 1-2, 86-92 (1918) · doi:10.1093/biomet/12.1-2.86
[25] Fang, K. T.; Kotz, S.; Ng, K. W., Symmetric Multivariate and Related Distribution (1990), London, UK: Chapman and Hall Ltd, London, UK · Zbl 0699.62048
[26] Ethier, S. N.; Kurtz, T. G., Markov Processes (1986), New York, NY, USA: Wiley, New York, NY, USA · Zbl 0592.60049
[27] Durrett, R., Probability: Theory and Examples (1996), Belmont, Australia: Duxbury Press, Belmont, Australia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.