×

A semi-parametric approach to risk management. (English) Zbl 1405.91537

Summary: The benchmark theory of mathematical finance is the Black-Scholes-Merton (BSM) theory, based on Brownian motion as the driving noise process for stock prices. Here, the distributions of financial returns of the stocks in a portfolio are multivariate normal. Risk management based on BSM underestimates tails. Hence estimation of tail behaviour is often based on extreme value theory (EVT). Here we discuss a semi-parametric replacement for the multivariate normal involving normal variance-mean mixtures. This allows a more accurate modelling of tails, together with various degrees of tail dependence, while (unlike EVT) the whole return distribution can be modelled. We use a parametric component, incorporating the mean vector \(\mu\) and covariance matrix \(\Sigma\), and a non-parametric component, which we can think of as a density on \([0,\infty)\), modelling the shape (in particular the tail decay) of the distribution. We work mainly within the family of elliptically contoured distributions, focusing particularly on normal variance mixtures with self-decomposable mixing distributions. We discuss efficient methods to estimate the parametric and non-parametric components of our model and provide an algorithm for simulating from such a model. We fit our model to several financial data series. Finally, we calculate value at risk (VaR) quantities for several portfolios and compare these VaRs to those obtained from simple multivariate normal and parametric mixture models.

MSC:

91G10 Portfolio theory

Software:

S-PLUS; KernSmooth; R
Full Text: DOI

References:

[1] Aldous, J. 1985. “Exchangeability and related topics”. In École d’éte de probabilités de Saint Flour XIII., Lecture Notes in Mathematics, vol 1117, Berlin: Springer.
[2] Anderson, T W, Fang, K-T and Hsu, H. 1986. Maximum-likelihood estimates and likelihood-ratio criteria for multivariate elliptically contoured distributions. Can. J. Stat., 14: 55-9. · Zbl 0587.62104
[3] Baringhaus, L. 1991. Testing for spherical symmetry of a multivariate distribution. Ann. Stat., 19: 899-917. · Zbl 0725.62053
[4] Barndorff-Nielsen, O E, Jensen, J L and Sørensen, M. 1998. Some stationary processes in discrete and continuous time. Adv. Appl. Probab., 30: 989-1007. · Zbl 0930.60026
[5] Barndorff-Nielsen, O E, Kent, J T and Sørensen, M. 1982. Normal variance-mean mixtures and z,-distributions. Int. Stat. Rev., 50: 145-59. · Zbl 0497.62019
[6] Barndorff-Nielsen, O E and Shephard, N. 2001. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. B, 63: 167-241. · Zbl 0983.60028
[7] Barndorff-Nielsen, O E and Shephard, N. 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. B, 64: 253-80. · Zbl 1059.62107
[8] Bauer, C. 2000. Value at risk using hyperbolic distributions. J. Econ. Business, 52: 455-67.
[9] Beran, R. 1979. Testing for ellipsoidal symmetry of a multivariate density. Ann. Stat., 7: 150-62. · Zbl 0406.62029
[10] Bingham, N H, Goldie, C M and Teugels, J L. 1987. Regular Variation, Cambridge: Cambridge University Press. · Zbl 0617.26001
[11] Bingham, N H and Kiesel, R. 2001a. “Hyperbolic and semiparametric models in finance”. In Disordered and Complex Systems, Edited by: Sollich, P, Coolen, A C C, Hughston, L P and Streater, R F. Melville, NY: American Institute of Physics.
[12] Bingham, N H and Kiesel, R. 2001b. “Modelling asset return with hyperbolic distributions”. In Asset Return Distributions, Edited by: Knight, J and Satchell, S. Boston, MA: Butterworth-Heinemann. · Zbl 1045.91019
[13] Bingham, N H and Kiesel, R. 2002. Semi-parametric modelling in finance: theoretical foundation. Quant. Finance, 2: 241-50. · Zbl 1408.62171
[14] Carr, P, Chang, E and Madan, D B. 1998. The variance-gamma process and option pricing. Eur. Finance Rev., 2: 79-105. · Zbl 0937.91052
[15] Dacorogna, M M, Müller, U A and Pictet, O V. 1998. “Heavy tails in high-frequency financial data”. In A Practical Guide to Heavy Tails. Statistical Techniques and Applications, Edited by: Adler, R J, Feldmann, R E and Taqqu, M S. 55-77. Berlin: Springer. · Zbl 0926.91024
[16] Dowd, K. 1998. Beyond Value at Risk: The New Science of Risk Management, Chichester: Wiley. · Zbl 0924.90013
[17] Eberlein, E. 2001. “Applications of generalized hyperbolic Lévy motions to finance”. In Lévy Processes: Theory and Applications, Edited by: Barndorff-Nielsen, O E, Mikosch, T and Resnick, S. Boston, MA: Birkhäuser. · Zbl 0982.60045
[18] Eberlein, E and Özkan, F. 2003. Time consistency of Lévy models. Quant. Finance, 3: 40-50. · Zbl 1405.91610
[19] Eberlein, E and Prause, K. 2002. “The generalized hyperbolic model: financial derivatives and risk measures”. In Mathematical Finance: Bachelier Congr. 2000, Edited by: Geman, H, Madan, D, Pliska, S R and Vorst, T. Berlin: Springer. · Zbl 0996.91067
[20] Embrechts, P, Klüppelberg, C and Mikosch, T. 1997. Modelling Extremal Events, New York: Springer. · Zbl 0873.62116
[21] Embrechts, P, McNeil, A and Straumann, D. 2001. “Correlation and dependency in risk management: properties and pitfalls”. In Risk Management: Value at Risk Beyond, Edited by: Dempster, M and Moffat, H K. Cambridge: Cambridge University Press.
[22] Fang, K-T, Kotz, S and Ng, K-W. 1990. Symmetric Multivariate and Related Distributions, London: Chapman and Hall. · Zbl 0699.62048
[23] Fang, K-T and Zhang, Y-T. 1990. Generalized Multivariate Analysis, Beijing: Science Press. · Zbl 0724.62054
[24] Frahm, G and Junker, M. 2003. Generalized elliptical distributions - models and estimation. Research Center Caesar, Bonn, Germany, Preprint, · Zbl 1116.62352
[25] Frahm, G, Junker, M and Schmidt, R. 2002. Estimating the tail-dependence coefficient. www.mathematik.uni-ulm.de/finmath/ · Zbl 1101.62012
[26] Hahn, M G, Mason, D M and Weiner, D C. 1991. Sums, Trimmed Sums and Extremes, Edited by: Hahn, M G, Mason, D M and Weiner, D C. Boston, MA: Birkhäuser. · Zbl 0717.00017
[27] Halgreen, C. 1979. Self-decomposability of the generalized inverse Gaussian and hyperbolic distribution functions. Z. Wahrschein., 47: 13-8. · Zbl 0377.60020
[28] Härdle, W. 1990a. Applied Onparametric Regression, Econometric Society Monographs, vol 19, Cambridge: Cambridge University Press. · Zbl 0714.62030
[29] Härdle, W. 1990b. Smoothing Techniques: With Implementation in S, Berlin: Springer. · Zbl 0716.62040
[30] Hodgson, D J, Linton, O and Vorkink, K. 2002. Testing the capital asset pricing model efficiently under elliptical symmetry: a semi-parametric approach. J. Appl. Econometrics, 7: 617-39.
[31] Hull, J and White, A. 1998. Value at risk when daily changes in market variables are not normally distributed. J. Derivitives, 5: 9-19.
[32] Joe, H. 1997. Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, vol 73, London: Chapman and Hall. · Zbl 0990.62517
[33] Jones, M C. 1993. Simple boundary correction for kernel density estimation. Stat. Comput., 3: 135-46.
[34] Jorion, P. 2000. Value at Risk, 2nd edn, New York: McGraw-Hill.
[35] Kiesel, R, Perraudin, W and Taylor, A P. An extremes analysis of VaRs for emerging market benchmark bonds. Proc. Econometrics Workshop in Karlsruh, Berlin: Springer.
[36] Korsholm, L. 2000. The semi-parametric normal mean-variance mixture model. Scand. J. Stat., 27: 227-61. · Zbl 0955.62032
[37] Li, R, Fang, K-T and Zhu, L. 1997. Some Q-Q probability plots to test spherical and elliptical symmetry. J. Comput. Graphical Stat., 6: 435-50.
[38] Madan, D B and Seneta, E. 1990. The variance-gamma (VG) model for share market returns. J. Business, : 511-24.
[39] Manzotti, A, Pérez, F J and Quiroz, A J. 2002. A statistic for testing the null hypothesis of elliptical symmetry. J. Multivariate Anal., 81: 274-85. · Zbl 1011.62046
[40] Müller, H G. 1991. Smooth optimum kernel estimators near endpoints. Biometrika, 78: 521-30. · Zbl 1192.62108
[41] Nelsen, R B. 1999. An Introduction to Copulas, Springer Lecture Notes in Statistics, vol 139, Berlin: Springer. · Zbl 0909.62052
[42] Niederreiter, H. 1993. Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, PA: SIAM. · Zbl 0761.65002
[43] Pagan, A R. 1996. The econometrics of financial markets. J. Empirical Finance, 3: 15-102.
[44] Park, B U and Marron, J S. 1990. Comparison of data-driven bandwidth selectors. J. Am. Stat. Assoc., 85: 66-73.
[45] Resnick, S. 1987. Extreme Values, Regular Variation, and Point Processes, New York: Springer. · Zbl 0633.60001
[46] Rousseeuw, P J and van Zomeren, B C. 1990. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc., 85: 633-9.
[47] Sato, K-I. 1999. Lévy Processes and Infinite Divisibility, Cambridge Studies in Advanced Mathematics, vol 68, Cambridge: Cambridge University Press. · Zbl 0973.60001
[48] Schmidt, R. 2002. Tail dependence for elliptically contoured distributions. Math. Oper. Res., 55: 301-27. · Zbl 1015.62052
[49] Schmidt, R and Stadtmüller, U. 2002. Nonparametric estimation of tail dependence. www.mathematik.uni-ulm.de/finmath/ · Zbl 1124.62016
[50] Schmitt, F, Schertzer, D and Lovejoy, S. 1999. Multifractal analysis of foreign exchange data. Appl. Stochastic Models Data Anal., 15: 29-53. · Zbl 0927.62110
[51] Schuster, E F. 1985. Incorporating support constraints into nonparametric estimators of densities. Commun. Stat. Theory Methods, 14: 1123-36. · Zbl 0585.62070
[52] Sheather, S J and Jones, M C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. B, 53: 683-90. · Zbl 0800.62219
[53] Shiller, R J. 2000. Irrational Exuberance, Princeton, NJ: Princeton University Press.
[54] Stute, W and Werner, U. 1991. “Nonparametric estimation of elliptically contoured densities”. In Nonparametric Functional Estimation and Related Topics, Edited by: Roussas, G. Dordrecht: Kluwer Academic. · Zbl 0742.62045
[55] Venables, W N and Ripley, B D. 1999. Modern Applied Statistics with S-PLUS, 3rd edn, New York: Springer. · Zbl 0927.62002
[56] Wand, M P and Jones, M C. 1995. Kernel Smoothing, London: Chapman and Hall. · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.