×

Simulating realistic correlation matrices for financial applications: correlation matrices with the Perron-Frobenius property. (English) Zbl 07193726

Summary: This article is concerned with the simulation of correlation matrices with realistic properties for financial applications. Previous studies found that the major part of observed correlation matrices in financial applications exhibits the Perron-Frobenius property, namely a dominant eigenvector with only positive entries. We present a simulation algorithm for random correlation matrices satisfying this property, which can be augmented to take into account a realistic eigenvalue structure. From the construction principle applied in our algorithm, and the fact that it is able to generate all such correlation matrices, we are further able to prove that the proportion of Perron-Frobenius correlation matrices in the set of all correlation matrices is \(2^{1-d}\) in dimension \(d\).

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Hüttner A, Mai JF, Mineo S.Portfolio selection based on graphs: does it align with Markowitz-optimal portfolios? Depend Model. 2018;6:63-87. doi: 10.1515/demo-2018-0004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1394.91331
[2] Bouchaud JP, Potters M. Financial applications of random matrix theory: a short review. In: Akeman G, Baik J, Di Francesco P, editors. The oxford handbook of random matrix theory. Oxford: Oxford University Press; 2011. p. 824-850. [Google Scholar] · Zbl 1235.91177
[3] Laloux L, Cizeau P, Bouchaud JP, et al. Noise dressing of financial correlation matrices. Phys Rev Lett. 1999;83(7):1467-1470. doi: 10.1103/PhysRevLett.83.1467[Crossref], [Web of Science ®], [Google Scholar]
[4] Plerou V, Gopikrishnan P, Rosenow B, et al. Universal and nonuniversal properties of cross correlations in financial time series. Phys Rev Lett. 1999;83:1471-1474. doi: 10.1103/PhysRevLett.83.1471[Crossref], [Web of Science ®], [Google Scholar]
[5] Plerou V, Gopikrishnan P, Rosenow B, et al. Random matrix approach to cross correlations in financial data. Phys Rev E. 2002;65(6):066126. doi: 10.1103/PhysRevE.65.066126[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1001.91026
[6] Boyle P, Feng S, Melkuev D. Correlation matrices with the Perron-Frobenius property. 2014. (Working paper). Available from: https://ssrn.com/abstract=2493844. [Google Scholar]
[7] Boyle P, N’Diaye T.Correlation matrices with the Perron-Frobenius property. Electron J Linear Al. 2018;34:240-268. [Web of Science ®], [Google Scholar] · Zbl 1390.15026
[8] Johnson CR, Tarazaga P.On matrices with Perron-Frobenius properties and some negative entries. Positivity. 2004;8(4):327-338. doi: 10.1007/s11117-003-3881-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1078.15018
[9] Tarazaga P, Raydan M, Hurman A.Perron-Frobenius theorem for matrices with some negative entries. Linear Algebra Appl. 2001;328(1-3):57-68. doi: 10.1016/S0024-3795(00)00327-X[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0989.15008
[10] Kazakov M, Kalyagin V. Spectral properties of financial correlation matrices. In: Kalyagin V, Koldanov P, Pardalos P, editors. Models, algorithms and technologies for network analysis. Cham: Springer International Publishing; 2016. p. 135-156. [Google Scholar]
[11] Vandewalle N, Brisbois F, Tordoir X.Non-random topology of stock markets. Quant Finance. 2001;1(3):372-374. doi: 10.1088/1469-7688/1/3/308[Taylor & Francis Online], [Google Scholar] · Zbl 1405.91724
[12] Bonanno G, Caldarelli G, Lillo F, et al. Topology of correlation-based minimal spanning trees in real and model markets. Phys Rev E. 2003;68(4):046130. doi: 10.1103/PhysRevE.68.046130[Crossref], [Web of Science ®], [Google Scholar]
[13] Joe H.Generating random correlation matrices based on partial correlations. J Multivar Anal. 2006;97:2177-2189. doi: 10.1016/j.jmva.2005.05.010[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1112.62055
[14] Lewandowski D, Kurowicka D, Joe H.Generating random correlation matrices based on vines and extended onion method. J Multivar Anal. 2009;100:1989-2001. doi: 10.1016/j.jmva.2009.04.008[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1170.62042
[15] Ghosh S, Henderson S.Behavior of the norta method for correlated random vector generation as the dimension increases. ACM Trans Model Comput Simul. 2003;13(3):276-294. doi: 10.1145/937332.937336[Crossref], [Google Scholar] · Zbl 1390.65009
[16] Davies P, Higham N.Numerically stable generation of correlation matrices and their factors. BIT. 2000;40(4):640-651. doi: 10.1023/A:1022384216930[Crossref], [Google Scholar] · Zbl 0969.65036
[17] Bendel R, Mickey M.Population correlation matrices for sampling experiments. Commun Stat Simul Comput. 1978;7(2):163-182. doi: 10.1080/03610917808812068[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0386.62011
[18] Holmes R.On random correlation matrices. SIAM J Matrix Anal Appl. 1991;12(2):239-272. doi: 10.1137/0612019[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0723.15020
[19] Marsaglia G, Olkin I.Generating correlation matrices. SIAM J Sci Stat Comput. 1984;5(2):470-475. doi: 10.1137/0905034[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0552.65006
[20] Hirschberger M, Qi Y, Steuer R.Randomly generating portfolio-selection covariance matrices with specified distributional characteristics. Eur J Oper Res. 2007;177:1610-1625. doi: 10.1016/j.ejor.2005.10.014[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1102.91047
[21] Hardin J, Garcia S, Golan D.A method for generating realistic correlation matrices. Ann Appl Stat. 2013;7(3):1733-1762. doi: 10.1214/13-AOAS638[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1454.62021
[22] Fan J, Fan Y, Lv J.High-dimensional covariance matrix estimation using a factor model. J Econom. 2008;147(1):186-197. doi: 10.1016/j.jeconom.2008.09.017[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1429.62185
[23] Cizeau P, Potters M, Bouchaud JP.Correlation structure of extreme stock returns. Quant Finance. 2001;1(2):217-222. doi: 10.1080/713665669[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1405.91732
[24] Stewart G.The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J Numer Anal. 1980;17(3):403-409. doi: 10.1137/0717034[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0443.65027
[25] Absil PA, Mahony R, Sepulchre R. Optimization algorithms on matrix manifolds. Princeton: Princeton University Press; 2008. [Crossref], [Google Scholar] · Zbl 1147.65043
[26] Fang KT, Kotz S, Ng KW. Symmetric multivariate and related distributions. London: Chapman and Hall; 1990. [Crossref], [Google Scholar] · Zbl 0699.62048
[27] Bun J, Bouchaud JP, Potters M.Cleaning large correlation matrices: tools from random matrix theory. Phys Rep. 2017;666:1-109. doi: 10.1016/j.physrep.2016.10.005[Crossref], [Google Scholar] · Zbl 1359.15031
[28] Clauset A, Shalizi C, Newman M.Power-law distributions in empirical data. SIAM Rev. 2009;51(4):661-703. doi: 10.1137/070710111[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1176.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.