×

Boundary value problems associated to a Hermitian Helmholtz equation. (English) Zbl 1269.30050

The authors consider special elliptic systems of partial differential equations arising from the factorization of the Helmholtz equation in the context of Hermitian Clifford analysis. Corresponding integral representations and Riemann type boundary value problems are studied.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI

References:

[1] Abreu Blaya, R.; Bory Reyes, J., On the Riemann Hilbert type problems in Clifford analysis, Adv. Appl. Clifford Algebr., 11, 1, 15-26 (2001) · Zbl 1061.30033
[2] Abreu Blaya, R., Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces, Bound. Value Probl., 2008 (2008), article ID 425256, 16 pages · Zbl 1180.30052
[3] Abreu Blaya, R., A Hermitean Cauchy formula on a domain with fractal boundary, J. Math. Anal. Appl., 369, 273-282 (2010) · Zbl 1201.30060
[4] Abreu Blaya, R.; Bory Reyes, J.; Brackx, F.; De Schepper, H., Hermitean Teodorescu transform decomposition of continuous matrix functions on fractal hypersurfaces, Bound. Value Probl., 2010 (2010), article ID 791358, 15 pages · Zbl 1191.15006
[5] R. Abreu Blaya, et al., A Hilbert transform for matrix functions on fractal domains, Compl. Anal. Oper. Theory, in press, doi:10.1007/s11785-010-0121-2; R. Abreu Blaya, et al., A Hilbert transform for matrix functions on fractal domains, Compl. Anal. Oper. Theory, in press, doi:10.1007/s11785-010-0121-2 · Zbl 1275.30016
[6] R. Abreu Blaya, J. Bory Reyes, R. Delanghe, F. Sommen, Duality for Hermitean systems in \(\mathbb{R}^{2 n}\) doi:10.1007/s11785-010-0098-x; R. Abreu Blaya, J. Bory Reyes, R. Delanghe, F. Sommen, Duality for Hermitean systems in \(\mathbb{R}^{2 n}\) doi:10.1007/s11785-010-0098-x · Zbl 1275.30018
[7] Abreu Blaya, R.; Bory Reyes, J.; Peña Peña, D.; Sommen, F., A boundary value problem for Hermitean monogenic functions, Bound. Value Probl., 2008 (2008), article ID 385874, 7 pages · Zbl 1154.30036
[8] Bernstein, S., Fundamental solutions for Dirac-type operators, (Lawrynowicz, J., Generalizations of Complex Analysis and Their Applications in Physics. Generalizations of Complex Analysis and Their Applications in Physics, Banach Center Publ., vol. 37 (1996), Polish Academy of Sciences, Institute of Mathematics), 159-172 · Zbl 0871.30041
[9] Brackx, F., Fundaments of Hermitean Clifford analysis. I. Complex structure, Complex Anal. Oper. Theory, 1, 3, 341-365 (2007) · Zbl 1131.30019
[10] Brackx, F., Fundaments of Hermitean Clifford analysis. II. Splitting of \(h\)-monogenic equations, Complex Var. Elliptic Equ., 52, 10-11, 1063-1079 (2007) · Zbl 1144.30019
[11] Brackx, F.; De Knock, B.; De Schepper, H., A matrix Hilbert transform in Hermitean Clifford analysis, J. Math. Anal. Appl., 344, 1068-1078 (2008) · Zbl 1148.44004
[12] Brackx, F.; De Knock, B.; De Schepper, H.; Sommen, F., On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis, Bull. Braz. Math. Soc., 40, 3, 395-416 (2009) · Zbl 1182.30081
[13] Brackx, F.; De Schepper, H.; De Schepper, N.; Sommen, F., Hermitean Clifford-Hermite wavelets: An alternative approach, Bull. Belg. Math. Soc. Simon Stevin, 15, 1, 87-107 (2008) · Zbl 1132.42316
[14] Brackx, F.; De Schepper, H.; Eelbode, D.; Souček, V., The Howe dual pair in Hermitean Clifford analysis, Rev. Mat. Iberoam., 26, 2, 449-479 (2010) · Zbl 1201.30061
[15] Brackx, F.; De Schepper, H.; Luna-Elizarrarás, M. E.; Shapiro, M., Integral representation formulae in Hermitean Clifford analysis, (Gürlebeck, K.; Könke, C., Proceedings of the 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering (2009), Weimar: Weimar Germany) · Zbl 1291.30247
[16] Brackx, F.; De Schepper, H.; Sommen, F., A theoretical framework for wavelet analysis in a Hermitean Clifford setting, Commun. Pure Appl. Anal., 6, 3, 549-567 (2007) · Zbl 1149.30036
[17] Brackx, F.; De Schepper, H.; Sommen, F., The Hermitean Clifford analysis toolbox, Adv. Appl. Clifford Algebr., 18, 3-4, 451-487 (2008) · Zbl 1177.30064
[18] Garnir, H. G., Les problémes aux limites de la physique mathématique (1958), Birkhäuser: Birkhäuser Basel · Zbl 0085.31102
[19] Gonzalez-Flores, C.; Zeron, E. S., Factorisations of the Helmholtz operator, Radós theorem, and Clifford analysis, Adv. Appl. Clifford Algebr., 21, 1, 89-101 (2011) · Zbl 1218.30133
[20] Gürlebeck, K., Hypercomplex factorization of the Helmholtz equation, Z. Anal. Anwend., 5, 125-131 (1986) · Zbl 0593.35029
[21] Gürlebeck, K.; Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers (1997), Wiley and Sons · Zbl 0897.30023
[22] Kravchenko, V. V., Applied Quaternionic Analysis, Res. Exp. Math., vol. 28 (2003), Heldermann Verlag: Heldermann Verlag Lemgo · Zbl 1014.78003
[23] Kravchenko, V. V.; Shapiro, M., Integral Representations for Spatial Models of Mathematical Physics, Res. Notes Math., vol. 351 (1996), Pitman · Zbl 0872.35001
[24] McIntosh, A.; Mitrea, M., Clifford algebras and Maxwellʼs equations in Lipschitz domains, Math. Methods Appl. Sci., 22, 1599-1620 (1999) · Zbl 0967.35138
[25] Mikhlin, S.; Prössdorf, S., Singular Integral Operators (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0612.47024
[26] Mitrea, M., Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains, J. Math. Anal. Appl., 202, 819-842 (1996) · Zbl 0858.35027
[27] Mitrea, M., Hypercomplex variable techniques in Harmonic analysis, (Ryan, J., Clifford Algebras in Analysis and Related Topics. Clifford Algebras in Analysis and Related Topics, Stud. Adv. Math. (1996), CRC Press: CRC Press Boca Raton), 103-128 · Zbl 0852.30030
[28] Mitrea, M., Boundary value problems for Dirac operators and Maxwellʼs equations in nonsmooth domains, Math. Methods Appl. Sci., 25, 16-18, 1355-1369 (2002) · Zbl 1029.35212
[29] Rocha-Chávez, R.; Shapiro, M.; Sommen, F., Integral theorems for functions and differential forms in \(C^m\), Res. Notes Math., vol. 428 (2002), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, Florida · Zbl 0991.32002
[30] Rudin, W., Functional Analysis (1973), McGraw-Hill: McGraw-Hill New York · Zbl 0253.46001
[31] Ryan, J., Complexified Clifford analysis, Complex Var. Theory Appl., 1, 1, 119-149 (1982/1983) · Zbl 0503.30039
[32] Sabadini, I.; Sommen, F., Hermitian Clifford analysis and resolutions, Math. Methods Appl. Sci., 25, 16-18, 1395-1413 (2002) · Zbl 1013.30033
[33] Sommen, F.; Peña Peña, D., A Martinelli-Bochner formula for the Hermitian Dirac equation, Math. Methods Appl. Sci., 30, 9, 1049-1055 (2007) · Zbl 1117.30040
[34] Xu, Z., The dual of \(M_{\lambda,(r)}(\Omega; C_m)\), (Wen, Guo-Chun; etal., Integral Equations and Boundary Value Problems. Proceedings of the International Conference (1991), World Scientific: World Scientific Singapore), 243-250 · Zbl 0783.30039
[35] Xu, Z., A function theory for the operator \(D - \lambda \), Complex Var. Theory Appl., 16, 1, 27-42 (1991) · Zbl 0762.47023
[36] Xu, Z., On linear and nonlinear Riemann-Hilbert problems for regular functions with values in a Clifford algebra, Chin. Ann. Math. Ser. B, 11, 3, 349-358 (1990) · Zbl 0722.30038
[37] Xu, Z., Helmholtz equations and boundary value problems, (Res. Notes Math., vol. 262 (1992), Pitman: Pitman Harlow), 204-214 · Zbl 0797.30039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.