×

High-order finite volume methods for viscoelastic flow problems. (English) Zbl 1127.76336

Summary: Accurate and stable finite volume schemes for solving viscoelastic flow problems are presented. Two contrasting finite volume schemes are described: a hybrid cell-vertex scheme and a pure cell-centred counterpart. Both schemes employ a time-splitting algorithm to evolve the solution through time towards steady state. In the case of the hybrid scheme, a semi-implicit formulation is employed in the momentum equation, based on the Taylor-Galerkin approach with a pressure-correction step to enforce incompressibility. The basis of the pure finite volume approach is a backward Euler scheme with a semi-Lagrangian step to treat the convection terms in the momentum and constitutive equations. Two distinct finite volume schemes are presented for solving the systems of partial differential equations describing the flow of viscoelastic fluids. The schemes are constructed to be second-order accurate in space. The issue of stability is also addressed with respect to the treatment of convection. Numerical examples are presented illustrating the performance of these schemes on some steady and transient problems that possess analytical solutions.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
Full Text: DOI

References:

[1] Aboubacar, M.; Webster, M., A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows, J. Non-Newtonian Fluid Mech., 98, 83-106 (2001) · Zbl 1044.76038
[2] Bevis, M. J.; Darwish, M. S.; Whiteman, J. R., Numerical modelling of viscoelastic liquids using a finite volume method, J. Non-Newtonian Fluid Mech., 45, 311-337 (1992) · Zbl 0784.76063
[3] Carew, E. O.A.; Townsend, P.; Webster, M. F., Taylor-Galerkin algorithms for viscoelastic flow: application to a model problem, Numer. Methods Partial Differential Equations, 10, 171-190 (1994) · Zbl 0792.76038
[4] Chandio, M. S.; Webster, M. F., On consistency of cell-vertex finite-volume formulations for viscoelastic flow, (Binding, D. M.; Hudson, N. E.; Mewis, J.; Piau, J.-M.; Petrie, C. J.S.; Townsend, P.; Wagner, M. H.; Walters, K., XIII Int. Cong. on Rheol., Cambridge, vol. 2 (2000), British Society of Rheology: British Society of Rheology Glasgow), 208-210
[5] Deconinck, H.; Roe, P. L.; Struijs, R., A multi-dimensional generalization of Roe’s flux difference splitter for the Euler equations, Comput. Fluids, 22, 215-222 (1993) · Zbl 0790.76054
[6] Donea, J., A Taylor-Galerkin method for convective transport problems, Int. J. Numer. Methods Eng., 20, 101-119 (1984) · Zbl 0524.65071
[7] Fortin, M.; Pierre, R., On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Eng., 73, 341-350 (1989) · Zbl 0692.76002
[8] M. Gerritsma, Time dependent numerical simulations of a viscoelastic fluid on a staggered grid, Ph.D. Thesis, University of Groningen, The Netherlands, 1996; M. Gerritsma, Time dependent numerical simulations of a viscoelastic fluid on a staggered grid, Ph.D. Thesis, University of Groningen, The Netherlands, 1996
[9] Guénette, R.; Fortin, M., A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech., 60, 27-52 (1995)
[10] Hawken, D. M.; Tamaddon-Jahromi, H. R.; Townsend, P.; Webster, M. F., A Taylor-Galerkin based algorithm for viscous incompressible flow, Int. J. Numer. Methods Fluids, 10, 327-351 (1990) · Zbl 0686.76019
[11] Hubbard, M. E.; Roe, P. L., Multidimensional upwind fluctuation distribution schemes for scalar dependent problems, Int. J. Numer. Methods Fluids, 33, 711-736 (2000) · Zbl 0985.76064
[12] Jameson, A.; Mavriplis, D., Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, AIAA, 24, 611-618 (1986) · Zbl 0589.76080
[13] Van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput., 7, 3, 870-891 (1986) · Zbl 0594.76023
[14] Marchal, J. M.; Crochet, M. J., A new mixed finite element method for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987) · Zbl 0637.76009
[15] Mompean, G.; Deville, M., Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction, J. Non-Newtonian Fluid Mech., 72, 253-279 (1997)
[16] Morton, K. W.; Crumpton, P. I.; MacKenzie, J. A., Cell vertex methods for inviscid and viscous flows, Comput. Fluids, 22, 91-102 (1993) · Zbl 0779.76073
[17] Owens, R. G.; Phillips, T. N., Computational Rheology (2002), Imperial College Press: Imperial College Press London · Zbl 1015.76002
[18] Phillips, T. N.; Williams, A. J., Conservative semi-Lagrangian finite volume schemes, Numer. Methods Partial Differential Equations, 17, 403-425 (2001) · Zbl 0987.76063
[19] Phillips, T. N.; Williams, A. J., Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method, J. Non-Newtonian Fluid Mech., 87, 215-246 (1999) · Zbl 0945.76052
[20] Rajagopalan, D.; Armstrong, R. C.; Brown, R. A., Finite element methods for calculation of steady, viscoelastic flow using constitutive equation with a Newtonian viscosity, J. Non-Newtonian Fluid Mech., 36, 159-192 (1990) · Zbl 0709.76011
[21] Sasmal, G. P., A finite volume approach for calculation of viscoelastic flow through an abrupt axisymmetric contraction, J. Non-Newtonian Fluid Mech., 56, 15-47 (1995)
[22] Scroggs, J. S.; Semazzi, F. H.M., A conservative semi-Lagrangian method for multidimensional fluid dynamics applications, Numer. Methods Partial Differential Equations, 11, 445-452 (1995) · Zbl 0831.76068
[23] H.R. Tamaddon-Jahromi, M. Aboubacar, M.F. Webster, Time-dependent algorithms for viscoelastic flow – finite element/volume schemes, Numer. Methods Partial Differential Equations (2002), submitted, see Tech. Rep. Univ. Wales Swansea CSR 11-2002; H.R. Tamaddon-Jahromi, M. Aboubacar, M.F. Webster, Time-dependent algorithms for viscoelastic flow – finite element/volume schemes, Numer. Methods Partial Differential Equations (2002), submitted, see Tech. Rep. Univ. Wales Swansea CSR 11-2002 · Zbl 1141.76433
[24] Wapperom, P.; Webster, M. F., Simulation for viscoelastic flow by a finite volume/element method, Comput. Methods Appl. Mech. Eng., 180, 281-304 (1999) · Zbl 0966.76056
[25] Waters, N. D.; King, M. J., Unsteady flow of an elastico-viscous liquid, Rheol. Acta, 9, 345-355 (1970) · Zbl 0205.56402
[26] Weatherill, N. P., A method for generating irregular computational grids in multiply connected planar domains, Int. J. Numer. Methods Fluids, 8, 181-197 (1988) · Zbl 0641.76057
[27] Webster, M. F.; Wapperom, P., A second-order hybrid finite-element/volume method for viscoelastic flows, J. Non-Newtonian Fluid Mech., 79, 405-431 (1998) · Zbl 0957.76036
[28] Xue, S.-C.; Phan-Thien, N.; Tanner, R. I., Three dimensional numerical simulation of viscoelastic flows through planar contractions, J. Non-Newtonian Fluid Mech., 74, 195-245 (1998) · Zbl 0957.76042
[29] Yoo, J. Y.; Na, Y., A numerical study of the planar contraction flow of a viscoelastic fluid using the SIMPLER algorithm, J. Non-Newtonian Fluid Mech., 30, 89-106 (1991) · Zbl 0718.76076
[30] O.C. Zienkiewicz, K. Morgan, J. Peraire, M. Vandati, R. Löhner, Finite elements for compressible gas flow and similar systems, in: Proc. of the 7th Int. Conf. Comput. Meth. Appl. Sci. Eng., Versailles, France, 1985; O.C. Zienkiewicz, K. Morgan, J. Peraire, M. Vandati, R. Löhner, Finite elements for compressible gas flow and similar systems, in: Proc. of the 7th Int. Conf. Comput. Meth. Appl. Sci. Eng., Versailles, France, 1985 · Zbl 0678.76074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.