×

Upwind iteration methods for the cell vertex scheme in one dimension. (English) Zbl 0811.65070

Model problems and their discretization by the cell vertex method are described. Methods for solving the arising algebraic equations are analyzed further. Some simple marching schemes based on the application of the symmetric Gauss-Seidel iteration to a system of discrete equations without diagonal dominance are introduced. It is shown that these methods have a convergence rate independent of the of unknowns for subcritical nozzle flow.
The Lax-Wendroff method upwind schemes as iteration schemes and their various generalizations are discussed. The aim in each case is to set to zero the residual for each cell, apart from exceptional cells such as those containing shocks. The ideal scheme for the transonic nozzle problem involves splitting a residual in the sonic cell and combining at the shock point.
Reviewer: K.Zlateva (Russe)

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Crumpton, P. I.; Mackenzie, J. A.; Morton, K. W., J. Comput. Phys, 109, 1 (1993) · Zbl 0790.76062
[2] Crumpton, P. I.; Mackenzie, J. A.; Morton, K. W., Thirteenth International Conference on Numerical Methods in Fluid Dynamics, Proceedings, Consiglio Nazionale delle Ricerche, Rome, Italy, July 1992, (Napolitano, M.; Sabetta, F., Lecture Notes in Physics, 414 (1993), Springer-Verlag: Springer-Verlag New York/Berlin), 519
[3] Crumpton, P. I.; Mackenzie, J. A.; Morton, K. W.; Rudgyard, M. A.; Shaw, G. J., Twelfth International Conference on Numerical Methods in Fluid Dynamics, Proceedings, University of Oxford, England, July 1990, (Morton, K. W., Lecture Notes in Physics, 371 (1990), Springer-Verlag: Springer-Verlag New York/Berlin), 243
[4] Gushchin, V. A.; Shchennikov, V. V., U.S.S.R. Comput. Math. Math. Phys, 14, 252 (1974)
[5] Hall, M. G., (Morton, K. W.; Baines, M. J., Proceedings, Conference on Numerical Methods for Fluid Dynamics, University of Reading (1985), Oxford Univ. Press: Oxford Univ. Press London), 303
[6] Harten, A., J. Comput. Phys, 49, 357 (1983) · Zbl 0565.65050
[7] Huang, L. C., J. Comput. Phys, 42, 195 (1981) · Zbl 0482.76066
[8] Lavery, J. E., J. Comput. Phys, 79, 436 (1988) · Zbl 0665.65068
[9] Lerat, A., C.R. Acad. Sci. A, 288, 1033 (1979) · Zbl 0439.65075
[10] Liepmann, H.; Roshko, A., Elements of Gas Dynamics (1957), Wiley: Wiley New York · Zbl 0078.39901
[11] Mackenzie, J. A.; Morton, K. W., Math. Comput, 60, 189 (1992)
[12] Morton, K. W.; Childs, P. N.; Rudgyard, M. A., (Morton, K. W.; Baines, M. J., Proceedings, IMA Conference, Numerical Methods for Fluid Dynamics III (1988), Oxford Univ. Press: Oxford Univ. Press Oxford), 137
[13] Morton, K. W.; Crumpton, P. I.; Mackenzie, J. A., Comput. Fluids, 22, 2-3, 91 (1993) · Zbl 0779.76073
[14] Morton, K. W.; Paisley, M. F., J. Comput. Phys, 80, 168 (1989) · Zbl 0656.76059
[15] Morton, K. W.; Rudgyard, M. A., Proceedings, 11th International Conference on Numerical Methods in Fluid Dynamics, Williamsburg, USA 1988, (Dwoyer, D. L.; Hussaini, M. Y.; Voigt, R. G., Lecture Notes in Physics, 323 (1989), Springer-Verlag: Springer-Verlag New York/ Berlin), 424
[16] Ni, R. H., AIAA J, 20, 1565 (1982) · Zbl 0496.76014
[17] Roe, P. L., Annu. Rev. Fluid Mech, 18, 337 (1986) · Zbl 0624.76093
[18] Roe, P. L.; van Leer, B., (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics III (1988), Oxford Univ. Press: Oxford Univ. Press Oxford), 520 · Zbl 0648.00011
[19] Steger, J. L.; Warming, R. F., J. Comput. Phys, 40, 263 (1981) · Zbl 0468.76066
[20] van Leer, B., SIAM J. Sci. Stat. Comput., 5, 1, 1 (1984)
[21] van Leer, B.; Lee, W.-T.; Powell, K. G., (AIAA Paper 89-45-CP (1989), The University of Michigan, Department of Aerospace Engineering), (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.