×

Traveling wave solutions of the heat flow of director fields. (Fronts progressifs pour le flot des champs de vecteurs unitaires.) (English) Zbl 1176.35093

The authors consider the heat flow of harmonic maps from infinite cylinder \(\{(x_1,x_2,x_3)\in\mathbb R^3: x_1^2+x_2^2<1\}\) to the unit sphere \(\mathbb S^2: u_t=\Delta u+|\nabla u|^2u\), to which by cylindrical coordinates there corresponds a scalar angle function \(h(r,x_3,t)\). In order to study nonuniqueness of axially symmetric solutions of the heat flow, they look for traveling wave solutions \(h(r,x_3,t)=h(r,z), z=x_3-ct\) which satisfy the following singular elliptic equation
\[ h_{rr}+h_{zz}+\frac{h_r}{r}+ch_z-\frac{\sin(2h)}{2r^2}=0, \quad r\in{(0,1)},\;z\in{\mathbb{R}};\qquad h(1,z)=g(z), \]
where \(c>0\) is the wave speed and \(g\) is a given function satisfying some special conditions. By the variation methods and the concept of relaxed energy, they prove in two cases the existence of traveling wave solutions with point singularity of topological degree 0 or 1.

MSC:

35K55 Nonlinear parabolic equations
35A21 Singularity in context of PDEs
35A15 Variational methods applied to PDEs

References:

[1] Bertsch, M.; Dal Passo, R.; Pisante, A., Point singularities and nonuniqueness for the heat flow for harmonic maps, Comm. Partial Differential Equations, 28, 1135-1160 (2003) · Zbl 1029.58008
[2] Bertsch, M.; Dal Passo, R.; Van der Hout, R., Nonuniqueness for the heat flow of harmonic maps on the disk, Arch. Rational Mech. Anal., 161, 2, 93-112 (2002) · Zbl 1006.35050
[3] Bertsch, M.; Muratov, C.; Primi, I., Traveling wave solutions of harmonic heat flow, Calc. Var. Partial Differential Equations, 26, 489-509 (2006) · Zbl 1098.35076
[4] M. Bertsch, I. Primi, Non uniqueness of the traveling wave speed for harmonic heat flow, preprint, 2005; M. Bertsch, I. Primi, Non uniqueness of the traveling wave speed for harmonic heat flow, preprint, 2005 · Zbl 1182.35071
[5] Bertsch, M.; Podio-Guidugli, P.; Valente, V., On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl., CLXXIX, 331-360 (2001) · Zbl 1097.74017
[6] Bethuel, F.; Brezis, H.; Coron, J. M., Relaxed energies for harmonic maps, (Variational Methods (Paris, 1988). Variational Methods (Paris, 1988), Progress in Nonlinear Differential Equations and their Applications, vol. 4 (1990), Birkhäuser Boston: Birkhäuser Boston Boston), 37-52 · Zbl 0793.58011
[7] Chang, K.-C.; Ding, W.-Y.; Ye, R., Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom., 36, 2, 507-515 (1992) · Zbl 0765.53026
[8] Coron, J. M., Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 335-344 (1990) · Zbl 0707.58017
[9] Grotowski, J. F., Harmonic map heat flow for axially symmetric data, Manuscripta Math., 73, 207-228 (1991) · Zbl 0764.58007
[10] Grotowski, J. F., Concentrated boundary data and axially symmetric harmonic maps, J. Geom. Anal., 3, 279-292 (1993) · Zbl 0782.58017
[11] Hamilton, R. S., Harmonic Maps of Manifolds with Boundary, Lecture Notes, vol. 471 (1975), Springer: Springer Berlin · Zbl 0308.35003
[12] Hardt, R.; Lin, F. H.; Poon, C. C., Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math., 14, 417-459 (1992) · Zbl 0769.58012
[13] Jost, J., Harmonic mappings between Riemannian manifolds, (Proc. Centre Math. Analysis, Canberra (1983), Australian National University Press) · Zbl 0542.58001
[14] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, vol. 1150 (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0593.35002
[15] I. Primi, Nonuniqueness of the heat flow of director fields, in preparation; I. Primi, Nonuniqueness of the heat flow of director fields, in preparation · Zbl 1213.35020
[16] Matano, H., Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29, 2, 401-441 (1982) · Zbl 0496.35011
[17] Pisante, A., Reverse bubbling of currents and harmonic heat flows with prescribed singular set, Calc. Var. Partial Differential Equations, 19, 4, 337-378 (2004) · Zbl 1059.58010
[18] I. Primi, Traveling Waves of Director Fields, PhD thesis, University of Rome “La Sapienza”, 2005; I. Primi, Traveling Waves of Director Fields, PhD thesis, University of Rome “La Sapienza”, 2005
[19] Topping, P., Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Notices, 10, 505-520 (2002) · Zbl 1003.58014
[20] Van der Hout, R., Flow alignment in nematic liquid crystals in flows with cylindrical symmetry, Differential Integral Equations, 14, 2, 189-211 (2001) · Zbl 1021.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.