×

Diffusion equations: convergence of the functional scheme derived from the binomial tree with local volatility for non smooth payoff functions. (English) Zbl 1411.91614

Summary: The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type \(h_t (t,x) + \frac{x^2 \sigma^2 (t,x)}{2} h_{xx} (t,x)=0 \) as the number of discrete dates \(n\to\infty\). Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] Achou, Y.; Pironneau, O., Frontiers in Applied Mathematics, Computational Methods for Option Pricing, 57-94 (2005) · Zbl 1078.91008
[2] Bernardi, C.; Maday, Y., Handbook of Numerical Analysis, V, Spectral Methods, 209-485 (1997), Amsterdam: North-Holland, Amsterdam
[3] Brenner, P.; Thome, V.; Wahlbin Lars, B., Lecture Notes in Mathematics, Besov Spaces and Applications to Difference Methods for Initial Value Problems, 434 (1975), Berlin: Springer-Verlag Berlin Heidelberg, Berlin · Zbl 0294.35002
[4] Baptiste, J.; Carassus, L.; Lépinette, E., Pricing without Martingale Measures, Preprint (2018)
[5] Carter, R.; Giles, M. B., Convergence Analysis of Crank-Nicolson and Rannacher Time-Marching, Journal of Computation Finance, 9, 4, 89-112 (2006) · doi:10.21314/JCF.2006.152
[6] Ciarlet, P. G., Classics in Applied Mathematics, 529p, The Finite Element Method for Elliptic Problems (1978), Amsterdam: North- Holland, Amsterdam · Zbl 0383.65058
[7] Cox, J.; Ross, S. A.; Rubinstein, M., Option Pricing: A Simplified Approach, Journal of Financial Economics, 7, 229-263 (1979) · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[8] Darses, S.; Lépinette, E.; Kabanov, Y.; Rutkowski, M.; Zariphopoulou, T., Inspired by Finance, the Musiela Festschrift, Limit Theorem for a Modified Leland Hedging Strategy under Constant Transaction Costs Rate, 159-199. (2014), Springer · Zbl 1418.91462
[9] Denis, E., Marchés avec coûts de transaction: Approximation de Leland et arbitrage
[10] Diener, F.; Diener, M., Asymptotics of the Price Oscillations of a European Call Option in a Tree Model, Mathematical Finance, 14, 271-293 (2004) · Zbl 1124.91332 · doi:10.1111/mafi.2004.14.issue-2
[11] Eymard, R.; Gallouet, T.; Herbin, R., Handbook of Numerical Analysis, VII, Finite Volume Methods, 713-1020 (2000), North-Holland, Amsterdam: Elsevier · Zbl 0981.65095
[12] Friedman, A., Stochastic Differential Equations and Applications, 1 (1975), Academic Press · Zbl 0323.60056
[13] Hsia, -C.-C., On Binomial Option Pricing, Journal of Financial Research, 6, 41-45 (1983) · doi:10.1111/j.1475-6803.1983.tb00310.x
[14] Kabanov, Y.; Denis, E., Mean Square Error for the Leland-Lott Hedging Strategy: Convex Pay-Off, Finance and Stochastics, 14, 4, 626-667 (2010) · Zbl 1233.91262
[15] Lamberton, D.; Sulem, A., Ecole CEA, EDF, INRIA mathematiques financieres: modeles economiques et mathematiques des produits derives, Vitesse de convergence pour des approximations de type binomial, 347-359 (1999), Inria
[16] Leisen, D.; Reimer, M., Binomial Models for Option Valuation-Examining and Improving Convergence, Applied Mathematical Finance, 3, 319-346 (1996) · Zbl 1097.91513 · doi:10.1080/13504869600000015
[17] Lépinette, E.; Tran, T., Approximate Hedging in a Local Volatility Model with Proportional Transaction Costs, Applied Mathematical Finance, 21, 4, 313-341 (2014) · Zbl 1395.91455 · doi:10.1080/1350486X.2013.871802
[18] Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes et applications, I and II (1968), Paris: Dunod, Paris · Zbl 0165.10801
[19] Milstein, G. N., The Probability Approach to Numerical Solution of Nonlinear Parabolic Equations, Numerical Methods for Partial Differential Equations, 18, 4, 490-522 (2002) · Zbl 1014.65005 · doi:10.1002/(ISSN)1098-2426
[20] Nelson, D.; Ramaswamy, K., Simple Binomial Processes as Diffusion Approximations in Financial Models, Review of Financial Studies, 3, 393-430 (1990) · doi:10.1093/rfs/3.3.393
[21] Prigent, J. L., Weak Convergence of Financial Markets (2003), Springer-Verlag Berlin Heidelberg · Zbl 1094.91002
[22] Quarteroni, A., Advances in Numerical Analysis, I (Lancaster, 1990), An Introduction to Spectral Methods for Partial Differential Equations, 96-146 (1991), New York: Oxford University Press, New York · Zbl 0731.65073
[23] Rannacher, R., Finite Element Solution of Diffusion Problems with Irregular Data, Numerische Mathematik, 43, 309327 (1984) · Zbl 0512.65082 · doi:10.1007/BF01390130
[24] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial Value Problems (1994), Malabar, FL: Robert E. Krieger Publishing Co, Malabar, FL · Zbl 0824.65084
[25] Viitasaari, L., Rate of Convergence for Discrete Approximation of Option Prices, Preprint
[26] Walsh, J. B., The Rate of Convergence of the Binomial Tree Scheme, Finance and Stochastics, 7, 337-361 (2003) · Zbl 1062.91027 · doi:10.1007/s007800200094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.