×

Finite subgroups of Ham and Symp. (English) Zbl 1384.53066

If \((X,\omega)\) is a symplectic manifold, let \(\mathrm{Ham}(X,\omega)\) be the group of Hamiltonian diffeomorphisms and \(\mathrm{Symp}(X,\omega)\) the group of symplectic diffeomorphisms of \((X,\omega)\). \(\mathrm{Symp}_0(X,\omega)\subseteq\mathrm{Symp}(X,\omega)\) and \(\mathrm{Diff}_0(X)\subseteq\mathrm{Diff}(X)\) are the identity components. If \(C\) and \(d\) are natural numbers, then a group \({\mathcal G}\) is said to be \((C,d)\)-Jordan if each finite subgroup \(G\subseteq{\mathcal G}\) has an abelian subgroup \(A\subseteq G\) satisfying \([G : A]\leq C\) and such that \(A\) can be generated by \(d\), or fewer elements.
In this paper, the author is interested in the finite subgroups of \(\mathrm{Ham}(X,\omega)\) or \(\mathrm{Symp}(X,\omega)\) for an arbitrary compact symplectic manifold \(X\). It is shown that if \((X,\omega)\) is a \(2n\)-dimensional compact and connected symplectic manifold, then \(\mathrm{Ham}(X,\omega)\) is \((C,n)\)-Jordan for some \(C\) depending only on \(H^*(X)\), where \(H^*(X)\) denotes the integral cohomology of \(X\). This result implies that if \(\dim X=2n\) and the flux homomorphism \(\pi_1(\mathrm{Symp}_0(X,\omega))\to H^1(X;\mathbb R)\) vanishes, then \(\mathrm{Symp}_0(X,\omega)\) is \((C,n)\)-Jordan for some \(C\) depending only on \(H^*(X;\mathbb Z)\). Also, the author proves that if \((X,\omega)\) is a \(2n\)-dimensional compact and connected symplectic manifold satisfying \(b_1(X)= 0\), then \(\text{Symp}(X,\omega)\) is \((C,n)\)-Jordan for some \(C\) which only depends on \(H^*(X)\). The stronger result states that if \((X,J)\) is a \(2n\)-dimensional almost complex, compact, and connected smooth manifold satisfying \(b_1(X)= 0\), and there exists \(\omega\in H^2(X;\mathbb R)\) such that \(\omega^n\neq 0\), then the group \(\mathrm{Diff}(X,J)\) of all diffeomorphisms preserving the almost complex structure \(J\) on \(X\) is \((C,n)\)-Jordan for a constant \(C\) depending only on \(H^*(X)\).
It is not known whether the symplectomorphism group of every compact symplectic manifold is Jordan. The author proves the weaker result stating that if \((X,\omega)\) is a compact and connected symplectic manifold, then there exists a constant \(C\) depending only on \(H^*(X)\) with the property that any finite subgroup \(\Gamma\subset\mathrm{Symp}(X,\omega)\) has a subgroup \(N\subseteq\Gamma\) satisfying \([\Gamma : N]\leq C\) and \(N\) is either abelian or \(2\)-step nilpotent. The above results are consequences of the following property: If \(E\) is a complex vector bundle over a compact, connected, smooth, and oriented manifold \(M\), the real rank of \(E\) is equal to the dimension of \(M\), and \(\langle e(E),[M]\rangle\neq 0\), where \(e(E)\) is the Euler class of \(E\), then there exists a constant \(C\) such that, for any prime \(p\) and any finite \(p\)-group \(G\) acting on \(E\) by vector bundle automorphisms preserving an almost complex structure \(J\) on \(M\), there is a subgroup \(G_0\subseteq G\) satisfying \(M^{G_0}\neq\varnothing\) and \([G : G_0]\leq C\).

MSC:

53D05 Symplectic manifolds (general theory)
57S17 Finite transformation groups

References:

[1] Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1-28 (1984) · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[2] Birkar, C.: Singularities of linear systems and boundedness of Fano varieties. Preprint. arXiv:1609.05543 · Zbl 1348.14037
[3] Borel, A.: Seminar on Transformation Groups, Ann. of Math. Studies, vol. 46. Princeton University Press, Princeton (1960) · Zbl 0091.37202
[4] Bredon, G.: Topology and Geometry, Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1993) · Zbl 0791.55001
[5] Bredon, G.E.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46. Academic, London (1972) · Zbl 0246.57017
[6] Browder, W.: Pulling back fixed points. Invent. Math. 87, 331-342 (1987) · Zbl 0629.57026 · doi:10.1007/BF01389418
[7] Browder, W.: Actions of elementary abelian \[p\] p-groups. Topology 27(4), 459-472 (1988) · Zbl 0669.57023 · doi:10.1016/0040-9383(88)90024-9
[8] Browder, W.: Fixed points of actions of \[p\] p-groups on projective varieties. Math. Scand. 66(2), 185-196 (1990) · Zbl 0731.57017 · doi:10.7146/math.scand.a-12303
[9] Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982) · Zbl 0584.20036
[10] Cohen, R.L., Klein, J.R.: Umkehr maps. Homol. Homot. Appl. 11(1), 17-33 (2009) · Zbl 1160.55005 · doi:10.4310/HHA.2009.v11.n1.a2
[11] Conner, P.E., Floyd, E.E.: Differentiable Periodic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band, vol. 33. Academic, Springer, New York, Berlin (1964) · Zbl 0125.40103
[12] Csikós, B., Pyber, L., Szabó, E.: Diffeomorphism groups of compact 4-manifolds are not always Jordan. Preprint. arXiv:1411.7524
[13] Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. AMS Chelsea Publishing, Providence (2006). (reprint of the 1962 original) · Zbl 1093.20003 · doi:10.1090/chel/356
[14] Guillemin, V., Ginzburg, V.L., Karshon, Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 98. American Mathematical Society, Providence (2002) · Zbl 1197.53002
[15] Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. With an Appendix Containing Two Reprints by Henri Cartan. Mathematics Past and Present. Springer, Berlin (1999) · Zbl 0934.55007
[16] Hopf, H.: Zur topologie der abbildungen von mannigfaltigkeiten. Math. Ann. 102, 562-623 (1930) · JFM 55.0965.02 · doi:10.1007/BF01782365
[17] Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique. J. Reine Angew. Math. 84, 89-215 (1878) · JFM 09.0234.01 · doi:10.1515/crll.1878.84.89
[18] Kȩdra, J., Kotschick, D., Morita, S.: Crossed flux homomorphisms and vanishing theorems for flux groups. Geom. Funct. Anal. 16(6), 1246-1273 (2006) · Zbl 1114.57031 · doi:10.1007/s00039-006-0578-3
[19] Lalonde, F., McDuff, D., Polterovich, L.: Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135, 369-385 (1999) · Zbl 0907.58004 · doi:10.1007/s002220050289
[20] Mann, L.N., Su, J.C.: Actions of elementary p-groups on manifolds. Trans. Am. Math. Soc. 106, 115-126 (1963) · Zbl 0114.39104
[21] McDuff, D.: Quantum homology of fibrations over \[S^2\] S2. Int. J. Math. 11, 665-721 (2000) · Zbl 1110.53307
[22] McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Oxford University Press, Oxford (1995). (1998) · Zbl 0844.58029
[23] Meng, S., Zhang, D.-Q.: Jordan property for non-linear algebraic groups and projective varieties. Preprint. arXiv:1507.02230v1 · Zbl 1428.14023
[24] Minkowski, H.: Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math. 101, 196-202 (1887). (See also Collected Works. I, 212-218, Chelsea Publishing Company, 1967) · JFM 19.0189.01
[25] Mundet i Riera, I.: Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138, 2253-2262 (2010) · Zbl 1201.57022 · doi:10.1090/S0002-9939-10-10221-4
[26] Mundet i Riera, I.: Finite group actions on homology spheres and manifolds with nonzero Euler characteristic. Preprint. arXiv:1403.0383v2 · Zbl 1342.57021
[27] Mundet i Riera, I.: Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds. Transformation Groups. Preprint (to appear). arXiv:1412.6964 · Zbl 1385.57034
[28] Mundet i Riera, I.: Finite groups acting symplectically on \[T^2\times S^2\] T2×S2. Proc. Am. Math. Soc. 369(6), 4457-4483 (2017) · Zbl 1364.57026 · doi:10.1090/tran/6978
[29] Mundet i Riera, I., Turull, A.: Boosting an analogue of Jordan’s theorem for finite groups. Adv. Math. 272, 820-836 (2015) · Zbl 1369.20034 · doi:10.1016/j.aim.2014.12.021
[30] Polterovich, L.: Floer homology, dynamics and groups, Morse theoretic methods in nonlinear analysis and in symplectic topology, 417-438, NATO Sci. Ser. II Math. Phys. Chem., 217. Springer, Dordrecht (2006) · Zbl 1089.53066
[31] Popov, V.L.: On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties. In: Peter Russell’s Festschrift, Proceedings of the Conference on Affine Algebraic Geometry Held in Professor Russell’s honour, 1-5 June 2009, McGill University, Montreal., Volume 54 of Centre de Recherches Mathématiques CRM Proc. and Lect. Notes, pp. 289-311 (2011) · Zbl 1242.14044
[32] Popov, V.L.: Finite subgroups of diffeomorphism groups. Preprint. arXiv:1310.6548 · Zbl 1337.57066
[33] Popov, VL; Cheltsov, I. (ed.); etal., Jordan groups and automorphism groups of algebraic varieties, No. 79, 185-213 (2014), Berlin · Zbl 1325.14024
[34] Prokhorov, Y., Shramov, C.: Jordan property for Cremona groups. Am. J. Math. 138(2), 403-418 (2016) · Zbl 1343.14010 · doi:10.1353/ajm.2016.0017
[35] Prokhorov, Y., Shramov, C.: Jordan property for groups of birational selfmaps. Compos. Math. 150(12), 2054-2072 (2014) · Zbl 1314.14022 · doi:10.1112/S0010437X14007581
[36] Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549-572 (1971). (ibid. (2) 94 (1971), 573-602) · Zbl 0247.57013 · doi:10.2307/1970770
[37] Robinson, D.J.S.: A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, 2nd edn. Springer, New York (1996) · doi:10.1007/978-1-4419-8594-1
[38] Roseblade, J.E.: On groups in which every subgroup is subnormal. J. Algebra 2, 402-412 (1965) · Zbl 0135.04901 · doi:10.1016/0021-8693(65)90002-5
[39] Sambale, B.: Exponent and \[p\] p-rank of finite \[p\] p-groups and applications. Arch. Math. (Basel) 103(1), 11-20 (2014) · Zbl 1335.20020 · doi:10.1007/s00013-014-0665-x
[40] Serre, J.-P.: Bounds for the Orders of the Finite Subgroups of \[G(k)\] G(k), Group Representation Theory. EPFL Press, Lausanne (2007) · Zbl 1160.20043
[41] Serre, J.-P.: A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. Moscow Math. J. 9, 193-208 (2009)
[42] tom Dieck, T.: Transformation Groups, De Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co., Berlin (1987) · Zbl 0611.57002 · doi:10.1515/9783110858372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.