×

One-dimensional flows of a polytropic gas: Lie group classification, conservation laws, invariant and conservative difference schemes. (English) Zbl 1504.35024

Luo, Albert C. J. (ed.) et al., Symmetries and applications of differential equations. In memory of Nail H. Ibragimov (1939–2018). Beijing: Higher Education Press; Singapore: Springer. Nonlinear Phys. Sci., 61-98 (2021).
Summary: The chapter considers one-dimensional flows of a polytropic gas in the Lagrangian coordinates in three cases: plain one-dimensional flows, radially symmetric flows, and spherically symmetric flows. The one-dimensional flow of a polytropic gas is described by one second-order partial differential equation in the Lagrangian variables. The Lie group classification of this PDE is performed. Its variational structure allows to construct conservation laws with the help of Noether’s theorem. These conservation laws are also recalculated for the gas dynamics variables in the Eulerian and mass Lagrangian coordinates. Additionally, invariant and conservative difference schemes are provided.
For the entire collection see [Zbl 1478.34001].

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35B07 Axially symmetric solutions to PDEs
35Q35 PDEs in connection with fluid mechanics

References:

[1] Ovsiannikov LV (1978) Group analysis of differential equations. Nauka, Moscow. English translation: Ames WF (ed) (1982) Published by Academic, New York · Zbl 0484.58001
[2] Ibragimov NH (1985) Transformation groups applied to mathematical physics. Reidel, Boston · Zbl 0558.53040
[3] Olver PJ (1986) Applications of Lie groups to differential equations. Springer, New York · Zbl 0588.22001
[4] Marsden J, Ratiu T (1994) Introduction to mechanics and symmetry. Springer, New York · Zbl 0811.70002 · doi:10.1007/978-1-4612-2682-6
[5] Ibragimov NH (1999) Elementary Lie group analysis and ordinary differential equations. Wiley, Chichester · Zbl 1047.34001
[6] Bluman GW, Kumei S (1989) Symmetries and differential equations. Applied mathematical sciences, No. 81. Springer, New York · Zbl 0698.35001
[7] Ovsiannikov LV (1994) Program SUBMODELS. Gas dynamics. J Appl Maths Mechs 58(4):30-55 · Zbl 0890.76070
[8] Akhatov IS, Gazizov RK, Ibragimov NH (1991) Nonlocal symmetries. Heuristic approach. J Math Sci 55(1):1401-1450 · Zbl 0760.35002
[9] Ames WF, Anderson RL, Dorodnitsyn VA, Ferapontov EV, Gazizov RK, Ibragimov NH, Svirshchevskii SR (1994) CRC hand-book of Lie group analysis of differential equations, Volume I: symmetries, exact solutions and conservation laws. CRC Press, Boca Raton · Zbl 0864.35001
[10] Ibragimov NH (ed) (1995) CRC handbook of Lie group analysis of differential equations, vol 2. CRC Press, Boca Raton · Zbl 0864.35002
[11] Sjöberg A, Mahomed FM (2004) Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl Math Comput 150:379-397 · Zbl 1102.76059
[12] Webb GM, Zank GP (2009) Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics. J Phys A: Math Theor 42:475205 · Zbl 1183.82061
[13] Webb G (2018) Magnetohydrodynamics and fluid dynamics: action principles and conservation laws, vol 946. Lecture notes in physics. Springer, Heidelberg · Zbl 1397.76001
[14] Noether E (1971) Invariante variationsprobleme, Nachr. d. Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math-phys. Klasse, pp 235-257. English translation: Trans Theory Stat Phys 1(3):186-207. arXiv:physics/0503066 [physics.hist-ph] · Zbl 0292.49008
[15] Seliger RL, Whitham GB (1968) Variational principles in continuum mechanics. Proc R Soc Lond A 305:1-25 · Zbl 0198.57601 · doi:10.1098/rspa.1968.0103
[16] Shmyglevski YuD (1999) Analytical study of gas dynamics and fluids. Editorial URSS, Moscow (in Russian)
[17] Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333:311-328 · Zbl 1160.35008 · doi:10.1016/j.jmaa.2006.10.078
[18] Bluman GW, Cheviakov AF, Anco SC (2010) Applications of symmetry methods to partial differential equations. Applied mathematical sciences, vol 168. Springer, New York · Zbl 1223.35001
[19] Dorodnitsyn VA (1991) Transformation groups in a space of net variables. In: VINITI Acad Sci USSR, Itogi Nauki i Techniki, vol 34, pp 149-190, (1989) in Russian. English translation: J Sov Math 55(1490):1991 · Zbl 0727.65074
[20] Levi D, Winternitz P (2006) Continuous symmetries of difference equations. J Phys A: Math Gen 39:1-63 · Zbl 1112.37053 · doi:10.1088/0305-4470/39/2/R01
[21] Winternitz P (2011) Symmetry preserving discretization of differential equations and Lie point symmetries of differential-difference equations. In: Levi D, Olver PJ, Thomova Z, Winternitz P (eds) Symmetries and integrability of difference equations. Cambridge University Press, Cambridge, pp 292-341 · Zbl 1229.65133
[22] Dorodnitsyn V (2011) Applications of Lie groups to difference equations. Chapman & Hall/CRC differential and integral equations series · Zbl 1236.39002
[23] Dorodnitsyn VA (1993) Finite-difference analog of the Noether theorem. Dokl Akad Nauk 328:678 (in Russian) · Zbl 0809.65094
[24] Bakirova M, Dorodnitsyn V, Kozlov R (1997) Invariant difference schemes for heat transfer equations with a source. J Phys A: Math Gen 30:8139 · Zbl 0927.65105 · doi:10.1088/0305-4470/30/23/014
[25] Dorodnitsyn V, Kozlov R, Winternitz P (2000) Lie group classification of second-order ordinary difference equations. J Math Phys 41:480-504 · Zbl 0981.39010 · doi:10.1063/1.533142
[26] Dorodnitsyn V, Kozlov R (2003) A heat transfer with a source: the complete set of invariant difference schemes. J Nonl Math Phys 10:16-50 · Zbl 1026.65072 · doi:10.2991/jnmp.2003.10.1.3
[27] Dorodnitsyn V, Kozlov R, Winternitz P (2004) Continuous symmetries of Lagrangians and exact solutions of discrete equations. J Math Phys 45:336-359 · Zbl 1070.70010 · doi:10.1063/1.1625418
[28] Dorodnitsyn VA, Kaptsov EI (2020) Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models. Commun Nonlinear Sci Numer Simulat 89:105343 · Zbl 1450.76024
[29] Cheviakov AF, Dorodnitsyn VA, Kaptsov EI (2020) Invariant conservation law-preserving discretizations of linear and nonlinear wave equations. J Math Phys 61:081504 · Zbl 1454.65057
[30] Dorodnitsyn VA, Kaptsov EI, Meleshko SV, Symmetries, conservation laws, invariant solutions and difference schemes of the one-dimensional Green-Naghdi equations. J Nonl Math Phys. To appear · Zbl 1497.65120
[31] Dorodnitsyn VA, Kozlov R, Meleshko SV (2019) One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: symmetry classification, conservation laws, difference schemes. Commun Nonlinear Sci Numer Simulat 74:201-218 · Zbl 1464.82019 · doi:10.1016/j.cnsns.2019.03.009
[32] Samarskii AA, Popov YuP (1980) Difference methods for solving problems of gas dynamics. Nauka, Moscow (in Russian) · Zbl 0523.76062
[33] Rozhdestvenskii BL, Yanenko NN (1978) Systems of quasilinear equations and their applications to gas dynamics, 2nd ed. Nauka, Moscow. English translation published by Amer Math Soc Providence, RI (1983) · Zbl 0544.35001
[34] Ovsiannikov LV (2003) Lectures on the gas dynamics equations. Institute of computer studies, Moscow-Izhevsk (in Russian)
[35] Dorodnitsyn VA, Kozlov R (2011) Lagrangian and Hamiltonian formalism for discrete equations: symmetries and first integrals. Symmetries and integrability of difference equations. London mathematical society lecture notes. Cambridge University Press, Cambridge, pp 7-49 · Zbl 1229.39007
[36] Chernyi GG (1988) Gas dynamics. Nauka, Moscow (in Russian)
[37] Chorin AJ, Marsden JE (1990) A mathematical introduction to fluid mechanics. Springer, Berlin · Zbl 0712.76008
[38] Toro EF (1997) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin · Zbl 0888.76001 · doi:10.1007/978-3-662-03490-3
[39] Andreev VK, Kaptsov OV, Pukhnachov VV, Rodionov AA (1998) Applications of group-theoretic methods in hydrodynamics. Kluwer, Dordrecht · Zbl 0912.35001 · doi:10.1007/978-94-017-0745-9
[40] Kaptsov EI, Meleshko SV (2019) Conservation laws of the two-dimensional gas dynamics equations. Int J Non-Linear Mech 112:126-132 · doi:10.1016/j.ijnonlinmec.2019.03.004
[41] Samarskii AA (2001) The theory of difference schemes. Marcel Deakker, New York · Zbl 0971.65076 · doi:10.1201/9780203908518
[42] Ibragimov NH (1973) Conservation laws in hydrodynamics. Dokl Akad Nauk SSSR 210(6):1307-1309 · Zbl 0291.76010
[43] Terent’ev ED, Shmyglevskii YuD (1975) A complete system of equations in divergence form for the dynamics of an ideal gas. Zh Vychisl Mat Mat Fiz 15(6):1535-1544 · Zbl 0334.76032
[44] Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd. ed. Pergamon Press, Oxford · Zbl 0655.76001
[45] Popov YuP, Samarskii AA (1969) Completely conservative difference schemes. Zh Vychisl Mat Mat Fiz 9(4):953-958 · Zbl 0212.59102
[46] Korobitsyn VA (1989) Thermodynamically matched difference schemes. Zh Vychisl Mat Mat Fiz 29(2):309-312 · Zbl 0702.76076
[47] Kozlov R (2019) Conservative difference schemes for one-dimensional flows of polytropic gas. Commun. Nonlinear Sci Numer Simulat 78:104864 · Zbl 1475.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.