×

Subordination of semidynamical systems. (English) Zbl 1059.47050

The authors study semidynamical systems and develop elements of a (probabilistic) potential theory for semidynamical systems, the associated deterministic semigroup and resolvent. In particular, the notions of hitting and terminal times and multiplicative functionals are treated (pretty much in the vein of R. M. Blumenthal and R. K. Getoor’s [“Markov processes and potential theory” (Series of Monographs and Textbooks 29. New York-London) (1968; Zbl 0169.49204)].
The main result of the paper is a characterization of multiplicative semigroups over a Lusin space: if the excessive functions are a min-stable and separate points and if the \(0\)-resolvent of the constant function {1} satisfies some additional isomorphism property, then the multiplicative semigroup is deterministic, i.e., it arises as canonical deterministic semigroup of some semidynamical system. The proof of this result is based on a theorem on semigroups \((Q_t)_t\) subordinate to a canonical deterministic semigroup \((H_t)_t\) of a semidynamical system: if \(Q_tf \leq H_tf\) for all positive measurable \(f\) (i.e., subordinate), then \(Q_t = M_tH_t\) for some multiplicative functional \(M_t\). If \(Q_t\) is also deterministic, then \(M_t\) is given by \(1_{[0,T)}\), where \(T\) is a terminal time.

MSC:

47D07 Markov semigroups and applications to diffusion processes
31C99 Generalizations of potential theory
60J45 Probabilistic potential theory
60J57 Multiplicative functionals and Markov processes

Citations:

Zbl 0169.49204
Full Text: DOI

References:

[1] M. Bezzarga, Coexcessive functions and duality for semi-dynamical systems, Romanian Journal of Pure and Applied Mathematics, Tome XLII N\(^0\)1-2, (1997), 15-30. · Zbl 1071.31501
[2] M. Bezzarga, Right dual process for semidynamical systems, to appear in Potential, Analysis. · Zbl 1072.47039 · doi:10.1023/B:POTA.0000021336.18743.71
[3] M. Bezzarga and Gh. Bucur, Théorie du potentiel pour les systèmes semi-dynamiques, Rev. Roumaine Math. Pures. Appl., 39 (1994), 439-456. · Zbl 0861.31005
[4] M. Bezzarga and Gh. Bucur, Duality for semi-dynamical systems., Potential Theory –ICPT94, Walter de Gruyter (1996), 275-286. · Zbl 0861.31006
[5] N. P. Bhatia and O. Hajek, Local semi-dynamical systems , Lecture Notes in Math. 90 (1969), Springer. · Zbl 0176.39102 · doi:10.1007/BFb0079585
[6] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory , Academic Press (1968). · Zbl 0169.49204
[7] N. Bourbaki, Éléments de mathématiques. Intégration , Hermann (1965).
[8] C. Dellacherie and P. A. Meyer, Probabilités et Potentiel. Vol XII-XVI, Hermann (1987).
[9] R. K. Getoor, Transience and recurrence of Markov Process, Séminaire de Probabilité XIV (1978/1979); Lecture Notes in Math. 784 , Springer (1980), 397-409. · Zbl 0431.60067
[10] O. Hajek, Dynamical systems in the plane , Academic Press (1968). · Zbl 0169.54401
[11] M. Hmissi, Semi-groupe déterministe, Lecture notes in Math., 1393 (1989), 135-144. · Zbl 0714.58029
[12] M. Hmissi, Cone de potentiels stables par produit et systmes semidynamiques, Expo. Maths, 7 (1989), 265-273. · Zbl 0726.31010
[13] B. O. Koopmann, Hamiltoniens systems and transformation in Hilbert spaces, Proc. Nat. Acad. Sci. USA, 17 (1931), 315-318.
[14] P. A. Meyer, Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier, 12 (1962), 125-230. · Zbl 0138.40802 · doi:10.5802/aif.121
[15] S. H. Saperstone, Semidynamical systems in infinite dimensional space , App. Math. Sciences 37 (1981), Springer. · Zbl 0487.34044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.