×

Remarks on geometric quantum mechanics. (English) Zbl 1078.81029

Summary: Pursuing the aims of geometric quantum mechanics, it is shown in a geometrical fashion that, at least in finite dimension, Schrödinger dynamics enjoys classical complete integrability, and several consequences therefrom are deduced, including a Hannay-type reinterpretation of Berry’s phase and a geometric description of some aspects of the quantum measurement problem.

MSC:

81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
58J90 Applications of PDEs on manifolds
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Ahronov, Y.; Anandan, J., Phase change during a cyclic quantum evolution, Phys. Rev. Lett., 58, 1593-1596 (1987)
[2] Ahronov, Y.; Anandan, J., Geometry of quantum evolution, Phys. Rev. Lett., 65, 1697-1700 (1990) · Zbl 0960.81524
[3] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.; V. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978. · Zbl 0386.70001
[4] A. Ashtekar, T.A. Schilling, Geometrical Formulation of Quantum Mechanics in “On Einstein’s Path” (New York, 1966), Springer, New York, 1999, pp. 23-65. arXiv:gr-qc/9706069.; A. Ashtekar, T.A. Schilling, Geometrical Formulation of Quantum Mechanics in “On Einstein’s Path” (New York, 1966), Springer, New York, 1999, pp. 23-65. arXiv:gr-qc/9706069. · Zbl 0976.53088
[5] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc., 14, 1-15 (1982) · Zbl 0482.58013
[6] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Birkhauser, Basel, 1991.; M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Birkhauser, Basel, 1991. · Zbl 0726.57029
[7] M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45-57.; M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45-57. · Zbl 1113.81306
[8] M.V. Berry, Classical adiabatic phase and quantal adiabatic phase, J. Phys. A 18 (1985) 15-27.; M.V. Berry, Classical adiabatic phase and quantal adiabatic phase, J. Phys. A 18 (1985) 15-27. · Zbl 0569.70020
[9] D. Bohm, Quantum Theory, Prentice-Hall, New York, 1951 and Dover, New York, 1989.; D. Bohm, Quantum Theory, Prentice-Hall, New York, 1951 and Dover, New York, 1989.
[10] Brody, D. C.; Hughston, L. P., The quantum canonical ensemble, J. Math. Phys., 39, 2586-2592 (1998) · Zbl 0974.81008
[11] Brody, D. C.; Hughston, L. P., Information content for quantum states, J. Math. Phys., 41, 6502-6508 (2000) · Zbl 0986.81061
[12] Brody, D. C.; Hughston, L. P., Geometric quantum mechanics, J. Geom. Phys., 38, 19-53 (2001) · Zbl 1067.81081
[13] Cirelli, R.; Gatti, M.; Manià, A., On the non-linear extension of quantum superposition and uncertainty principles, J. Geom. Phys., 29, 64-86 (1999) · Zbl 0939.58005
[14] Cirelli, R.; Gatti, M.; Manià, A., The pure state space of quantum mechanics as Hermitian symmetric space, J. Geom. Phys., 45, 267-284 (2003) · Zbl 1032.81021
[15] R. Cirelli, A. Manià, L. Pizzocchero, Quantum mechanics as an infinite dimensional Hamiltonian system with uncertainty structure. Parts I and II, J. Math. Phys. 31 (1990) 2891-2897, 2898-2903.; R. Cirelli, A. Manià, L. Pizzocchero, Quantum mechanics as an infinite dimensional Hamiltonian system with uncertainty structure. Parts I and II, J. Math. Phys. 31 (1990) 2891-2897, 2898-2903. · Zbl 0850.70206
[16] Cirelli, R.; Pizzocchero, L., On the integrability of quantum mechanics as an infinite-dimensional Hamiltonian system, Nonlinearity, 3, 1057-1080 (1990) · Zbl 0718.58028
[17] Duistermaat, J. J.; Heckman, G. J., On the variation in the cohomology of the symplectic form of the reduced phase space, Inv. Math., 69, 259-268 (1982) · Zbl 0503.58015
[18] Gaeta, G.; Spera, M., Remarks on the geometric quantization of the Kepler problem, Lett. Math. Phys., 16, 187-192 (1988)
[19] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, H.D. Zeh, Decoherence and the Appearance of Classical World in Quantum Theory, Springer, Heidelberg, 2003.; D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, H.D. Zeh, Decoherence and the Appearance of Classical World in Quantum Theory, Springer, Heidelberg, 2003. · Zbl 0855.00003
[20] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.; P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. · Zbl 0408.14001
[21] Guillemin, V.; Sternberg, S., Convexity properties of the moment map. I, Inv. Math., 67, 491-513 (1982) · Zbl 0503.58017
[22] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicity of group representations, Inv. Math., 67, 515-538 (1982) · Zbl 0503.58018
[23] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.; V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984. · Zbl 0576.58012
[24] Hannay, J. H., Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A, 18, 221-230 (1985)
[25] Heslot, A., Quantum mechanics as a classical theory, Phys. Rev. D, 31, 1341-1348 (1985)
[26] L.P. Hughston, in: S. Huggett (Ed.), Geometric Aspects of Quantum Mechanics in “Twistor Theory”, Marcel Dekker, New York, 1995, pp. 59-79.; L.P. Hughston, in: S. Huggett (Ed.), Geometric Aspects of Quantum Mechanics in “Twistor Theory”, Marcel Dekker, New York, 1995, pp. 59-79. · Zbl 0846.53056
[27] Kibble, T. W.B, Geometrization of quantum mechanics, Commun. Math. Phys., 65, 189-201 (1979) · Zbl 0412.58006
[28] A. Yu Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation, AMS, Providence, RI, 2002.; A. Yu Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation, AMS, Providence, RI, 2002. · Zbl 1022.68001
[29] N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer, Heidelberg, 1998.; N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer, Heidelberg, 1998. · Zbl 0923.00008
[30] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1998.; D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1998. · Zbl 1066.53137
[31] A. Messiah, Mécanique quantique. I and II, Dunod, Paris, 1959, 1962.; A. Messiah, Mécanique quantique. I and II, Dunod, Paris, 1959, 1962.
[32] Montgomery, R., The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120, 269-294 (1988) · Zbl 0689.58043
[33] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Springer, New York, 1994.; D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Springer, New York, 1994. · Zbl 0797.14004
[34] Zung, N. T., Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities, Compos. Math., 101, 179-215 (1996) · Zbl 0936.37042
[35] N.T. Zung, Symplectic Topology of Integrable Hamiltonian Systems. II. Topological Classification. arXiv:math.DG/OO10181 v2.; N.T. Zung, Symplectic Topology of Integrable Hamiltonian Systems. II. Topological Classification. arXiv:math.DG/OO10181 v2. · Zbl 1127.53308
[36] A. Perelomov, Coherent States, Springer, Berlin, 1986.; A. Perelomov, Coherent States, Springer, Berlin, 1986. · Zbl 0605.22013
[37] Rawnsley, J., Coherent states and Kähler manifolds, Quart. J. Math., 28, 403-415 (1977) · Zbl 0387.58002
[38] T.A. Schilling, Geometry of quantum mechanics, Ph.D. Thesis, The Pennsylvania State University, 1996.; T.A. Schilling, Geometry of quantum mechanics, Ph.D. Thesis, The Pennsylvania State University, 1996.
[39] B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51 (1983) 2167-2170.; B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51 (1983) 2167-2170.
[40] Spera, M., On a generalized uncertainty principle, coherent states, and the moment map, J. Geom. Phys., 12, 165-182 (1993) · Zbl 0781.58009
[41] M. Spera, in: I. Mladenov, G. Naber (Eds.), On Kählerian Coherent States Proceedings of the Workshop on Geometry, Integrability and Quantization, Varna, Bulgaria, September 1-10, 1999, Coral Press, Sofia, 2000, pp. 241-256.; M. Spera, in: I. Mladenov, G. Naber (Eds.), On Kählerian Coherent States Proceedings of the Workshop on Geometry, Integrability and Quantization, Varna, Bulgaria, September 1-10, 1999, Coral Press, Sofia, 2000, pp. 241-256. · Zbl 0979.53096
[42] Thimm, A., Integrable geodesic flows, Ergod. Theor. Dyn. Syst., 1, 495-517 (1981) · Zbl 0491.58014
[43] J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement, Princeton University Press, Princeton, 1983.; J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement, Princeton University Press, Princeton, 1983.
[44] N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1992.; N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1992. · Zbl 0747.58004
[45] T. Wurzbacher, Quantization of integrable systems and Bohr-Sommerfeld varieties, Preprint, 1996.; T. Wurzbacher, Quantization of integrable systems and Bohr-Sommerfeld varieties, Preprint, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.