×

Constrained best approximation in Hilbert space. (English) Zbl 0682.41034

Summary: We study the characterization of the solution to the extremal problem \[ \inf \{\| x\| | x\in C\cap M\}, \] where x is in a Hilbert space H, C is a convex cone, and M is a translate of a subspace of H determined by interpolation conditions. We introduce a simple geometric property called the “conical hull intersection property” that provides a unifying framework for most of the basic results in the subject of optimal constrained approximation. Our approach naturally lends itself to considering the data cone as opposed to the constraint cone. A nice characterization of the solution occurs, for example, if the data vector associated with M is an interior point of the data cone.

MSC:

41A50 Best approximation, Chebyshev systems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A27 Inverse theorems in approximation theory
41A05 Interpolation in approximation theory
Full Text: DOI

References:

[1] V. E. Anderson, P. A. Ivert (1987):Constrained interpolants with minimal W k,p -norm. J. Approx. Theory,49:283–288. · Zbl 0607.41012 · doi:10.1016/0021-9045(87)90105-5
[2] A. Ben-Israel (1969):Linear equations and inequalities on finite-dimensional, real or complex, vector spaces: a unified theory. J. Math. Anal. Appl.,27:367–389. · Zbl 0174.31502 · doi:10.1016/0022-247X(69)90054-7
[3] C. de Boor (1973):The quasi-interpolant as a tool in elementary polynomial spline theory. In: Approximation Theory (G. G. Lorentz, ed.). New York: Academic Press, 269–276. · Zbl 0317.41007
[4] J. M.Borwein, H.Wolkowicz (to appear):A simple constraint qualification in infinite-dimensional programming. Math Programming.
[5] J. P. Butler, J. A. Reeds, S. V. Dawson (1981):Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM. J. Numer. Anal.,10:381–397. · Zbl 0471.65087 · doi:10.1137/0718025
[6] C. K. Chui (1988): Multivariate Splines: Theory and Applications. CBMS-NSF Lecture Series. Philadelphia: SIAM.
[7] J. Diestel (1984): Sequences and Series in Banach Spaces. New York: Springer-Verlag. · Zbl 0542.46007
[8] A. L.Dontchev, G.Illiev, M. M.Konstantinov (1985):Constrained interpolation via optimal control. In: Proceedings of the Fourteenth Spring Conference of the Union of Bulgarian mathematicians, Sunny Beach, April 6–9, 1985, pp. 385–392.
[9] P. R. Halmos (1967): A Hilbert Space Problem Book. New York: Van-Nostrand. · Zbl 0144.38704
[10] R. B. Holmes (1975): Geometric Functional Analysis and Its Applications. New York: Springer-Verlag. · Zbl 0336.46001
[11] G. Illiev, W. Pollul (1984):Convex interpolation with minimal L norm of the second derivative. Math Z.,186:49–56. · doi:10.1007/BF01215490
[12] G.Illiev, W.Pollul (1984):Convex interpolation by functions with minimal L p -norm (1<p<of the kth derivative. In: Proceedings of the Thirteenth Spring Conference of the Union of Bulgarian Mathematicians, Sunny Beach, April 6–9, 1984.
[13] L.Irvine (1985): Constrained Interpolation. Masters Thesis, Old Dominion University.
[14] L. D. Irvine, S. P. Marin, P. W. Smith (1986):Constrained interpolation and smoothing. Constr. Approx.,2:129–151. · Zbl 0596.41012 · doi:10.1007/BF01893421
[15] D. G. Luenberoer (1968): Optimization by Vector Space Methods. New York: Wiley.
[16] C. A. Micchelli, P. W. Smith, J. Swetits, J. D. Ward (1985):Constrained L p Approximation. Constr. Approx.,1:93–102. · Zbl 0582.41002 · doi:10.1007/BF01890024
[17] C. A. Micchelli, F. Utreras (1988):Smoothing and interpolation in a convex subset of a Hilbert space. SIAM J. Sci. Statist. Comput.,9:728–746. · Zbl 0651.65046 · doi:10.1137/0909048
[18] D. Moskovitz, L. L. Dines (1939):Convexity in a linear space with an inner product. Duke Math. J.,5:520–534. · Zbl 0022.08304 · doi:10.1215/S0012-7094-39-00543-0
[19] G.Opfer, H. J.Oberle (to appear):The derivation of cubic splines with obstacles by methods of optimization and optimal control. Numer. math.
[20] R. T. Rockafellar (1970): Convex Analysis. Princeton, NJ: Princeton University Press. · Zbl 0193.18401
[21] P. W. Smith, J. D. Ward (1988):Distinguished solutions to an L minimization problem. Approx. Theory Appl.,4:29–40. · Zbl 0699.41011
[22] P. W. Smith, H. Wolkowicz (1986):A nonlinear equation for linear programming. Math Programming,34:235–238. · Zbl 0593.90049 · doi:10.1007/BF01580588
[23] J. Ward (1986):Some constrained approximation problems. in: Approximation Theory V (C. K. Chui, L. L. Schumaker, J. D. Ward eds.) New York: Academic Press, pp. 211–229. · Zbl 0612.41029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.