×

An optimization method for acoustic inverse obstacle scattering problems with multiple incident waves. (English) Zbl 1379.76018

Summary: The inverse problem considered in this article is to determine the shape of a two-dimensional time-harmonic acoustic scatterer with Dirichlet boundary conditions from the knowledge of some far field patterns. Based on the optimization method due to A. Kirsch and R. Kress [in: Inverse and ill-posed problems, Alpine-U.S. Semin. St. Wolfgang/Austria 1986, Notes Rep. Math. Sci. Eng. 4, 279–289 (1987; Zbl 0629.65132)] for the inverse scattering problem, we propose a new scheme by reformulating the cost functional via a technique of piecewise integration with respect to incident directions. Convergence analysis of this method is given. Numerical experiments show that our method accelerates the computations without losing the accuracy of the reconstructions for the full-aperture problems. The method is extended to the limited-aperture case by weighting the total fields with special factors. Numerical examples for limited-aperture problems are also presented which show that our method produces satisfactory results efficiently in the illuminated regions.

MSC:

76Q05 Hydro- and aero-acoustics
76N25 Flow control and optimization for compressible fluids and gas dynamics

Citations:

Zbl 0629.65132
Full Text: DOI

References:

[1] Colton D, Inverse Acoustic and Electromagnetic Scattering Theory,, 2. ed. (1998) · Zbl 0893.35138
[2] Kirsch A, The Factorization Method for Inverse Problems (2008)
[3] Kress R, in Inverse Problems in Applied Sciences – Towards Breakthrough, Journal of Physics: Conference Series 73 pp 1– (2007)
[4] DOI: 10.1137/S0036144500367337 · Zbl 0960.76081 · doi:10.1137/S0036144500367337
[5] DOI: 10.1088/0266-5611/22/2/R01 · Zbl 1094.35144 · doi:10.1088/0266-5611/22/2/R01
[6] Kirsch A, Inverse Problems pp 279– (1987)
[7] Kirsch A, Boundary elements IX, Fluid Flow and Potential Applications 3 pp 3– (1987)
[8] DOI: 10.1088/0266-5611/4/3/013 · Zbl 0698.65076 · doi:10.1088/0266-5611/4/3/013
[9] DOI: 10.1016/0377-0427(92)90162-Q · Zbl 0774.65092 · doi:10.1016/0377-0427(92)90162-Q
[10] DOI: 10.1088/0266-5611/5/2/009 · Zbl 0677.65124 · doi:10.1088/0266-5611/5/2/009
[11] DOI: 10.1088/0266-5611/22/2/008 · Zbl 1094.35142 · doi:10.1088/0266-5611/22/2/008
[12] DOI: 10.1090/S0002-9939-05-07810-X · Zbl 1061.35160 · doi:10.1090/S0002-9939-05-07810-X
[13] DOI: 10.1137/S1064827502409705 · Zbl 1048.65058 · doi:10.1137/S1064827502409705
[14] DOI: 10.1137/0147087 · Zbl 0649.35087 · doi:10.1137/0147087
[15] Colton D, Integral Equation Methods in Scattering Theory (1983)
[16] DOI: 10.1016/0955-7997(95)00015-G · doi:10.1016/0955-7997(95)00015-G
[17] Moreé JJ, Numerical Analysis pp 105– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.