×

Computing the Hilbert transform using biorthogonal spline wavelets. (English. Russian original) Zbl 1276.65090

J. Math. Sci., New York 189, No. 1, 150-163 (2013); translation from Sovrem. Mat. Prilozh. 77 (2012).
The Hilbert transform of spline wavelets on the real line and the unit circle is analyzed. An algorithm for computing the Hilbert transform on uniform grids is described and some test calculations are reported.

MSC:

65R10 Numerical methods for integral transforms
65D07 Numerical computation using splines
44A15 Special integral transforms (Legendre, Hilbert, etc.)
65T60 Numerical methods for wavelets

Software:

NFFT
Full Text: DOI

References:

[1] S. Börm and W. Hackbusch, ”Hierarchical quadrature for singular integrals,” Computing, 74, No. 2, 75–100 (2005). · Zbl 1068.65038 · doi:10.1007/s00607-004-0076-0
[2] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. 1. One-Dimensional Theory, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften. Mathematische Reihe, 40, Birkhäuser, Basel–Stuttgart(1971).
[3] C. K. Chui, An Introduction to Wavelets. Wavelet Analysis and Its Applications, Academic Press, Boston, MA (1992). · Zbl 0925.42016
[4] A. Cohen, I. Daubechies, and J.-C. Feauveau, ”Biorthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math., 45, No. 5, 485–560 (1992). · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[5] W. Dahmen and A. Kunoth, ”Multilevel preconditioning,” Numer. Math., 63, No. 3, 315–344 (1992). · Zbl 0757.65031 · doi:10.1007/BF01385864
[6] W. Dahmen, S. Prössdorf, and R. Schneider, ”Wavelet approximation methods for pseudodifferential equations, II. Matrix compression and fast solution,” Adv. Comput. Math., 1, Nos. 3–4, 259–335 (1993). · Zbl 0826.65093 · doi:10.1007/BF02072014
[7] W. Dahmen, S. Prössdorf, and R. Schneider, ”Wavelet approximation methods for pseudodifferential equations, I. Stability and convergence”, Math. Z., 215, No. 4, 583–620 (1994). · Zbl 0794.65082 · doi:10.1007/BF02571732
[8] A. Dutt and V. Rokhlin, ”Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput., 14, No. 6, 1368–1393 (1993). · Zbl 0791.65108 · doi:10.1137/0914081
[9] A. Dutt and V. Rokhlin, ”Fast Fourier transforms for nonequispaced data, II,” Appl. Comput. Harmon. Anal., 2, No. 1, 85–100 (1995). · Zbl 0822.65130 · doi:10.1006/acha.1995.1007
[10] D. Gaier, Konstruktive Methoden der konformen Abbildung. Springer-Verlag, Berlin–Göttingen–Heidelberg (1964). · Zbl 0132.36702
[11] M. Golomb, ”Approximation by periodic spline interpolants on uniform meshes,” J. Approx. Theory, 1, 26–65 (1968). · Zbl 0185.30901 · doi:10.1016/0021-9045(68)90055-5
[12] M. H. Gutknecht, ”Fast algorithms for the conjugate periodic function,” Computing, 22, 79–91 (1979). · Zbl 0402.65015 · doi:10.1007/BF02246560
[13] S. L. Hahn, Hilbert Transforms in Signal Processing, The Artech House Signal Processing Library, Artech House, Boston, MA (1996). · Zbl 0910.94003
[14] P. Henrici, Applied and computational complex analysis, III. Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions, Reprint, Wiley Classics Library, Wiley, New York (1993). · Zbl 1107.30300
[15] F. W. King, Hilbert Transforms, Vol. 1, Encycl. Math. Appl. 124, Cambridge Univ. Press, Cambridge (2009).
[16] S. Kunis and D. Potts, ”Time and memory requirements of the nonequispaced FFT,” Sampl. Theory Signal Image Process., 7, No. 1, 77–100 (2008). · Zbl 1182.65209
[17] F. Martin, Analytische und numerische Verfahren zur Berechnung der Hilbert Transformation und zur Lösung funktionentheoretischer Randwertaufgaben, Ph.D. thesis, TU Bergakademie Freiberg (2010).
[18] J. Prestin, ”Trigonometric wavelets,” in: Wavelets and Apllied Topics, Narosa Publishing, New Delhi (2001), pp. 191–223. · Zbl 1049.42028
[19] J. Prestin and E. Quak, ”Trigonometric interpolation and wavelet decompositions,” Numer. Algorithms, 9, Nos. 3–4, 293–317 (1995). · Zbl 0828.65149 · doi:10.1007/BF02141593
[20] S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Mathematische Lehrbücher und Monographien II. Abteilung: Mathematische Monographien. 84. Akademie-Verlag, Berlin (1991). · Zbl 0763.65102
[21] E. Wegert, ”An iterative method for solving nonlinear Riemann–Hilbert problems,” J. Comput. Appl. Math., 29, No. 3, 311–327 (1990). · Zbl 0705.65020 · doi:10.1016/0377-0427(90)90014-Q
[22] E. Wegert, ”Nonlinear boundary-value problems for holomorphic functions and singular integral equations,” Math. Res., 65, Akademie Verlag, Berlin (1992). · Zbl 0745.30040
[23] R. Wegmann, ”Ein Iterationsverfahren zur konformen Abbildung,” Numer. Math., 30, 453–466 (1978). · Zbl 0432.30006 · doi:10.1007/BF01398511
[24] R. Wegmann, ”Discretized versions of Newton type iterative methods for conformal mapping,” J. Comput. Appl. Math., 29, No. 2, 207–224 (1990). · Zbl 0695.30005 · doi:10.1016/0377-0427(90)90358-7
[25] R. Wegmann, ”Methods for numerical conformal mapping,” in: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (R.Kühnau, ed.), Elsevier/North Holland, Amsterdam (2005), pp. 351–477. · Zbl 1131.30004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.