×

Existence and concentration of bound states of a class of nonlinear Schrödinger equations in \(\mathbb{R}^2\) with potential tending to zero at infinity. (English) Zbl 1259.35188

Summary: We establish the existence and concentration of solutions of a class of nonlinear Schrödinger equation \[ - \varepsilon^2 \Delta u_\varepsilon + V\left( x \right)u_\varepsilon = K\left( x \right)\left| {u_\varepsilon } \right|^{p - 2} u_\varepsilon e^{\alpha _0 \left| {u_\varepsilon } \right|^\gamma }, u_\varepsilon > 0, u_\varepsilon \in H^1 \left( {\mathbb{R}^2 } \right), \] where \(2 < p < {\infty}, \alpha_0 > 0, 0 < \gamma < 2\). When the potential function \(V (x)\) decays at infinity like \((1 + |x|)-\alpha\) with \(0 < \alpha {\leq} 2\) and \(K(x) > 0\) are permitted to be unbounded under some necessary restrictions, we show that a positive \(H^1(\mathbb{R}^2)\)-solution \(u_\varepsilon\) exists if it is assumed that the corresponding ground energy function \(G(\xi)\) of the nonlinear Schrödinger equation \(- \Delta u + V\left( \xi \right)u = K\left( \xi \right)\left| u \right|^{p - 2} ue^{\alpha _0 \left| u \right|^\gamma }\) has local minimum points. Furthermore, the concentration property of \(u_\epsilon\) is also established as \(\varepsilon\) tends to zero.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J60 Nonlinear elliptic equations
35B33 Critical exponents in context of PDEs
Full Text: DOI

References:

[1] Ambrosetti, A., Malchiodi, A., Ruiz, D.: Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Anal. Math., 98, 317–348 (2006) · Zbl 1142.35082 · doi:10.1007/BF02790279
[2] Ambrosetti, A., Felli, V., Malchiodi, A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc., 7, 117–144 (2005) · Zbl 1064.35175 · doi:10.4171/JEMS/24
[3] Ambrosetti, A., Wang, Z. Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differential Integral Equations, 18, 1321–1332 (2005) · Zbl 1210.35087
[4] Ba, N., Deng, Y. B., Peng, S. J.: Multi-peak bound states for Schrödinger equations with compactly supported or unbounded potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 1205–1226 (2010) · Zbl 1200.35282 · doi:10.1016/j.anihpc.2010.05.003
[5] Berestycki, H., Lions, P. L.: Nonlinear scalar field equations I, Existence of ground state. Arch. Rat. Mech. Anal., 82, 313–345 (1983) · Zbl 0533.35029
[6] Bonheure, D., Schaftingen, J. V.: Nonlinear Schrödinger equations with potentials vanishing at infinity. C. R. Acad. Sci. Paris., 342, 903–908 (2006) · Zbl 1099.35127 · doi:10.1016/j.crma.2006.04.011
[7] Bonheure, D., Schaftingen, J. V.: Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoam., 24(1), 297–351 (2008) · Zbl 1156.35084 · doi:10.4171/RMI/537
[8] Byeon, J., Wang, Z. Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. P.D.E., 18, 207–219 (2003) · Zbl 1073.35199 · doi:10.1007/s00526-002-0191-8
[9] Byeon, J., Wang, Z. Q.: Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials. J. Eur. Math. Soc., 8, 217–228 (2006) · Zbl 1245.35036 · doi:10.4171/JEMS/48
[10] Cao, D. M., Peng, S. J.: Multi-bump bound states of Schrödinger equations with a critical frequency. Math. Ann., 336(4), 925–948 (2006) · Zbl 1123.35061 · doi:10.1007/s00208-006-0021-y
[11] Cao, D. M., Peng, S. J.: Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Comm. P.D.E., 34, 1566–1591 (2009) · Zbl 1185.35248 · doi:10.1080/03605300903346721
[12] Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differential Equations, 160, 118–132 (2000) · Zbl 0952.35043 · doi:10.1006/jdeq.1999.3662
[13] del Pino, M., Felmer, P. L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. P.D.E., 4(2), 121–137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[14] Fei, M. W., Yin, H. C.: Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials. Pacific J. Math., 244(2), 261–296 (2010) · Zbl 1189.35304 · doi:10.2140/pjm.2010.244.261
[15] Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schroödinger equation with a bounded potential. J. Funct. Anal., 69, 397–408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[16] Gidas, B., Ni, W. M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}\)N. Adv. Math. Suppl. Stud., 7(A), 369–402 (1981) · Zbl 0469.35052
[17] Li, Y. Q., Wang, Z. Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 829–837 (2006) · Zbl 1111.35079 · doi:10.1016/j.anihpc.2006.01.003
[18] Lions, P. L.: The concentration-compactness principle in the calculus of variations: the locally compact case, Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145 (1984) · Zbl 0541.49009
[19] Liu, C. Y., Wang, Z. P., Zhou, H. S.: Asymptotically linear Schrödinger equation with potential vanishing at infinity. J. Differential Equations, 245(1), 201–222 (2008) · Zbl 1188.35181 · doi:10.1016/j.jde.2008.01.006
[20] Moroz, V., Schaftingen, J. V.: Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc. Var. P.D.E., 37(1–2), 1–27 (2010) · Zbl 1186.35038 · doi:10.1007/s00526-009-0249-y
[21] Ni, W. M.: On the elliptic equation its generalizations, and applications in geometry. Indiana Univ. Math. J., 31, 493–529 (1982) · Zbl 0496.35036 · doi:10.1512/iumj.1982.31.31040
[22] Wang, X. F.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., 153(2), 229–244 (1993) · Zbl 0795.35118 · doi:10.1007/BF02096642
[23] Wang, X. F., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal., 28, 633–655 (1997) · Zbl 0879.35053 · doi:10.1137/S0036141095290240
[24] Yin, H. C., Zhang, P. Z.: Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity. J. Differential Equations, 247, 618–647 (2009) · Zbl 1178.35353 · doi:10.1016/j.jde.2009.03.002
[25] Cao, D. M.: Nontrivial solutions of semilinear elliptic equation with critical exponent in \(\mathbb{R}\)2. Comm. P.D.E., 17, 407–435 (1992) · Zbl 0763.35034 · doi:10.1080/03605309208820848
[26] Li, G. B., Zhu, X. P.: Nontrivial solution of nonlinear scalar field equations with strong nonlinearity. Acta Math. Sci., 8, 431–448 (1988) · Zbl 0677.35036
[27] do Ó, J. M., Souto, M. A. S.: On a class of nonlinear Schrödinger equations in \(\mathbb{R}\)2 involving critical growth. J. Differential Equations, 174, 289–311 (2001) · Zbl 1068.35036 · doi:10.1006/jdeq.2000.3946
[28] Fei, M. W., Yin, H. C.: Bound states of 2-D critical nonlinear Schrödinger equations with potentials tending to zero at infinity. Preprint, IMS at Nanjing University, 2010 · Zbl 1283.35123
[29] Williem, M.: Minimax Theorems, Birkhäuser, Boston, MA, 1996
[30] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer, Berlin-New York, 1998 · Zbl 1042.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.