×

Equipartitions of measures in \(\mathbb{R}^4\). (English) Zbl 1202.68454

Summary: A well-known problem of B. Grünbaum [“Partitions of mass-distributions and of convex bodies by hyperplanes,” Pac. J. Math. 10, 1257–1261 (1960; Zbl 0101.14603)] asks whether for every continuous mass distribution (measure) \( d\mu = f\, dm\) on \( \mathbb{R}^n\) there exist \( n\) hyperplanes dividing \( \mathbb{R}^n\) into \(2^n\) parts of equal measure. It is known that the answer is positive in dimension \(n=3\) (see H. Hadwiger [“Simultane Vierteilung zweier Körper,”Arch. Math. 17, 274–278 (1966; Zbl 0137.41501)]) and negative for \( n\geq 5\) (see D. Avis [“Non-partitionable point sets,” Inf. Process. Lett. 19, 125–129 (1985; Zbl 0564.51007)] and E. Ramos [“Equipartition of mass distributions by hyperplanes,” Discrete Comput. Geom. 15, No.2, 147–167(1996; Zbl 0843.68120)]). We give a partial solution to Grünbaum’s problem in the critical dimension \( n=4\) by proving that each measure \( \mu\) in \( \mathbb{R}^4\) admits an equipartition by 4 hyperplanes, provided that it is symmetric with respect to a 2-dimensional affine subspace \( L\) of \( \mathbb{R}^4\). Moreover we show, by computing the complete obstruction in the relevant group of normal bordisms, that without the symmetry condition, a naturally associated topological problem has a negative solution. The computation is based on Koschorke’s exact singularity sequence (1981) and the remarkable properties of the essentially unique, balanced binary Gray code in dimension 4; see G. C. Tootill (1956) and D. E. Knuth (2001).

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
14E20 Coverings in algebraic geometry
46E25 Rings and algebras of continuous, differentiable or analytic functions
20C20 Modular representations and characters

References:

[1] Noga Alon, Splitting necklaces, Adv. in Math. 63 (1987), no. 3, 247 – 253. · Zbl 0635.05008 · doi:10.1016/0001-8708(87)90055-7
[2] Noga Alon, Some recent combinatorial applications of Borsuk-type theorems, Algebraic, extremal and metric combinatorics, 1986 (Montreal, PQ, 1986) London Math. Soc. Lecture Note Ser., vol. 131, Cambridge Univ. Press, Cambridge, 1988, pp. 1 – 12.
[3] S. S. Anisov, Convex curves in \?\?\(^{n}\), Tr. Mat. Inst. Steklova 221 (1998), 9 – 47 (Russian); English transl., Proc. Steklov Inst. Math. 2(221) (1998), 3 – 39. · Zbl 1017.52001
[4] V. Arnol\(^{\prime}\)d, On the number of flattening points on space curves, Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 11 – 22. · doi:10.1090/trans2/171/02
[5] David Avis, Nonpartitionable point sets, Inform. Process. Lett. 19 (1984), no. 3, 125 – 129. · Zbl 0564.51007 · doi:10.1016/0020-0190(84)90090-5
[6] Imre Bárány, Geometric and combinatorial applications of Borsuk’s theorem, New trends in discrete and computational geometry, Algorithms Combin., vol. 10, Springer, Berlin, 1993, pp. 235 – 249. · Zbl 0788.52012 · doi:10.1007/978-3-642-58043-7_10
[7] I. Bárány and J. Matoušek, Simultaneous partitions of measures by \?-fans, Discrete Comput. Geom. 25 (2001), no. 3, 317 – 334. · Zbl 0989.52009 · doi:10.1007/s00454-001-0003-5
[8] I. Bárány and J. Matoušek, Equipartition of two measures by a 4-fan, Discrete Comput. Geom. 27 (2002), no. 3, 293 – 301. · Zbl 1002.60006 · doi:10.1007/s00454-001-0071-6
[9] S. Beckett, Quad, In: “Collected Shorter Plays”, Faber, London, 1984.
[10] A. Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819 – 1872. · Zbl 0851.52016
[11] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. · Zbl 0125.40103
[12] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. · Zbl 0224.34003
[13] Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. · Zbl 0611.57002
[14] Edward R. Fadell and Sufian Y. Husseini, Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. · Zbl 0962.55001
[15] Eva Maria Feichtner and Günter M. Ziegler, On orbit configuration spaces of spheres, Topology Appl. 118 (2002), no. 1-2, 85 – 102. Arrangements in Boston: a Conference on Hyperplane Arrangements (1999). · Zbl 0992.55017 · doi:10.1016/S0166-8641(01)00043-8
[16] E. N. Gilbert, Gray codes and paths on the \?-cube, Bell System Tech. J 37 (1958), 815 – 826. · doi:10.1002/j.1538-7305.1958.tb03887.x
[17] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes., Pacific J. Math. 10 (1960), 1257 – 1261. · Zbl 0101.14603
[18] L. Guillou, A. Marin, A la Recherche de la Topologie Perdue, Birkhäuser, 1986. · Zbl 0597.57001
[19] H. Hadwiger, Simultane Vierteilung zweier Körper, Arch. Math. (Basel) 17 (1966), 274 – 278 (German). · Zbl 0137.41501 · doi:10.1007/BF01899586
[20] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[21] D.E. Knuth, Generating all \( n\)-tuples, Ch. 7.2.1.1, prefascicle 2A of “The Art of Computer Programming” (vol. 4), released September 2001, http://www-cs-faculty. stanford.edu/\( ^\sim\)knuth/fasc2a.ps.gz.
[22] V. Klee, Shapes of the future. Some unsolved problems in high-dimensional intuitive geometry, http://www.cs.ubc.ca/conferences/CCCG/elec_proc/klee.pdf.
[23] Ulrich Koschorke, Vector fields and other vector bundle morphisms — a singularity approach, Lecture Notes in Mathematics, vol. 847, Springer, Berlin, 1981. · Zbl 0459.57016
[24] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), no. 3, 319 – 324. · Zbl 0418.05028 · doi:10.1016/0097-3165(78)90022-5
[25] V. V. Makeev, Equipartition of a mass continuously distributed on a sphere and in space, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 279 (2001), no. Geom. i Topol. 6, 187 – 196, 249 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 119 (2004), no. 1, 96 – 100. · Zbl 1073.52502 · doi:10.1023/B:JOTH.0000008746.06445.63
[26] Peter Mani-Levitska, Siniša Vrećica, and Rade Živaljević, Topology and combinatorics of partitions of masses by hyperplanes, Adv. Math. 207 (2006), no. 1, 266 – 296. · Zbl 1110.68155 · doi:10.1016/j.aim.2005.11.013
[27] Jiří Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), no. 3, 315 – 334. ACM Symposium on Computational Geometry (North Conway, NH, 1991). · Zbl 0752.68088 · doi:10.1007/BF02293051
[28] Jiří Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10 (1993), no. 2, 157 – 182. · Zbl 0774.68101 · doi:10.1007/BF02573972
[29] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008
[30] E. A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996), no. 2, 147 – 167. · Zbl 0843.68120 · doi:10.1007/BF02717729
[31] I. J. Schoenberg, An isoperimetric inequality for closed curves convex in even-dimensional Euclidean spaces, Acta Math. 91 (1954), 143 – 164. · Zbl 0056.15705 · doi:10.1007/BF02393429
[32] Vyacheslav Sedykh and Boris Shapiro, On Young hulls of convex curves in \?²\(^{n}\), J. Geom. 63 (1998), no. 1-2, 168 – 182. · Zbl 0927.52006 · doi:10.1007/BF01221247
[33] G.C. Tootill., Proc. IEE 103, Part B Supplement (1956), p. 435.
[34] Siniša T. Vrećica and Rade T. Živaljević, The ham sandwich theorem revisited, Israel J. Math. 78 (1992), no. 1, 21 – 32. · Zbl 0777.57011 · doi:10.1007/BF02801568
[35] Siniša T. Vrećica and Rade T. Živaljević, New cases of the colored Tverberg theorem, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 325 – 334. · Zbl 0824.52010 · doi:10.1090/conm/178/01908
[36] A.C. Yao, F.F. Yao, A general approach to \( d\)-dimensional geometric queries, Proceedings of the 17th ACM Annual Symposium on the Theory of Computing, 1985, 163-169.
[37] F. Frances Yao, David P. Dobkin, Herbert Edelsbrunner, and Michael S. Paterson, Partitioning space for range queries, SIAM J. Comput. 18 (1989), no. 2, 371 – 384. · Zbl 0675.68066 · doi:10.1137/0218025
[38] G.M. Ziegler, Personal communication, October 2004.
[39] Rade T. Živaljević, User’s guide to equivariant methods in combinatorics, Publ. Inst. Math. (Beograd) (N.S.) 59(73) (1996), 114 – 130. · Zbl 0946.52001
[40] Rade T. Živaljević, User’s guide to equivariant methods in combinatorics. II, Publ. Inst. Math. (Beograd) (N.S.) 64(78) (1998), 107 – 132. 50th anniversary of the Mathematical Institute, Serbian Academy of Sciences and Arts (Belgrade, 1996). · Zbl 0999.52005
[41] Rade T. Živaljević, Topological methods, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 209 – 224. · Zbl 0955.52500
[42] Rade T. Živaljević and Siniša T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory Ser. A 61 (1992), no. 2, 309 – 318. · Zbl 0782.52003 · doi:10.1016/0097-3165(92)90028-S
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.