×

Homology of cellular structures allowing multi-incidence. (English) Zbl 1331.68241

Summary: This paper focuses on homology computation over ‘cellular’ structures that allow multi-incidence between cells. We deal here with combinatorial maps, more precisely chains of maps and subclasses such as maps and generalized maps. Homology computation on such structures is usually achieved by computing simplicial homology on a simplicial analog. But such an approach is computationally expensive because it requires computing this simplicial analog and performing the homology computation on a structure containing many more cells (simplices) than the initial one. Our work aims at providing a way to compute homologies directly on a cellular structure. This is done through the computation of incidence numbers. Roughly speaking, if two cells are incident, then their incidence number characterizes how they are attached. Having these numbers naturally leads to the definition of a boundary operator, which induces a homology. Hence, we propose a boundary operator for chains of maps and provide optimization for maps and generalized maps. It is proved that, under specific conditions, the homology of a combinatorial map as defined in the paper is equivalent to the homology of its simplicial analogue.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
55U05 Abstract complexes in algebraic topology

Software:

MOKA

References:

[1] Agoston, M.K.: Algebraic Topology: A First Course. Pure and Applied Mathematics. Marcel Dekker Ed., New York (1976) · Zbl 0337.55001
[2] Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A boundary operator for computing the homology of cellular structures. Research Report 2012-1, XLIM-Sic Laboratory, University of Poitiers, France. http://hal.archives-ouvertes.fr/hal-00683031 (2011). Accessed 12 Mar 2014 · Zbl 1331.68241
[3] Alayrangues, S., Daragon, X., Lachaud, J.-O., Lienhardt, P.: Equivalence between closed connected \[n\] n-\[G\] G-maps without multi-incidence and n-surfaces. J. Math. Imaging Vis. 32(1), 1-22 (2008) · Zbl 1451.05054
[4] Alayrangues, S., Lienhardt, P., Peltier, S.: Conversion between chains of maps and chains of surfaces; application to the computation of incidence graphs homology. Research Report, Université de Poitiers. https://hal.archives-ouvertes.fr/hal-01130543 (2015). Accessed 12 Mar 2014 · Zbl 0491.05053
[5] Alayrangues, S.; Peltier, S.; Damiand, G.; Lienhardt, P.; Brlek, S. (ed.); Reutenauer, C. (ed.); Provençal, X. (ed.), Border operator for generalized maps, 300-312 (2009), Berlin/Heidelberg · Zbl 1261.68119
[6] Basak, T.: Combinatorial cell complexes and poincaré duality. Geom. Dedicata 147, 357-387 (2010) · Zbl 1206.55021 · doi:10.1007/s10711-010-9458-y
[7] Baumgart, B.: A polyhedron representation for computer vision. Proc. AFIPS Natl. Conf. 44, 589-596 (1975)
[8] Bellet, T., Poudret, M., Arnould, A., Fuchs, L., Le Gall, P.: Designing a topological modeler kernel: a rule-based approach. In: Shape Modeling International (SMI’10), Aix-en-Provence, France, 2010
[9] Bertrand, Y.; Damiand, G.; Fiorio, C.; Borgefors, G. (ed.); etal., Topological encoding of 3D segmented images, 311-324 (2000), Berlin · Zbl 1043.68784
[10] Brandel, S., Schneider, S., Perrin, M., Guiard, N., Rainaud, J.F., Lienhardt, P., Bertrand, Y.: Automatic building of structured geological models. J. Comput. Inf. Sci. Eng. 5(2), 138-148 (2005) · doi:10.1115/1.1884145
[11] Braquelaire, A.; Damiand, G.; Domenger, J-P; Vidil, F., Comparison and convergence of two topological models for 3D image segmentation, 59-70 (2003), New York · Zbl 1040.68545
[12] Braquelaire, J.-P., Guitton, P.: A model for image structuration. In: Proceedings of the Computer Graphics International’88, Genève, Switzerland, May 1988 · Zbl 0754.65018
[13] Brisson, E.: Representing geometric structures in \[d\] d dimensions: topology and order. Discrete Comput. Geom. 9(1), 387-426 (1993) · Zbl 0783.68129 · doi:10.1007/BF02189330
[14] Cardoze, D.; Miller, G.; Phillips, T.; Kim, M-S (ed.); Shimada, K. (ed.), Representing topological structures using cell-chains, 248-266 (2006), Berlin/Heidelberg · Zbl 1160.68608
[15] Cavalcanti, P.R., Carvalho, P.C.P., Martha, L.F.: Non-manifold modeling: an approach based on spatial subdivisions. Comput. Aided Des. 29(3), 299-320 (1997) · doi:10.1016/S0010-4485(96)00066-8
[16] Choi, Y.; Gursoz, EL; Prinz, FB; Turner, J. (ed.); Wozny, M. (ed.); Preiss, K. (ed.), Vertex-based representation of non-manifolds boundaries, 107-130 (1990), Amsterdam
[17] Colin de Verdière, E., Lazarus, F.: Optimal pants decompositions and shortest homotopic cycles on an orientable surface. J. ACM 54, 18 (2007) · Zbl 1311.57006 · doi:10.1145/1255443.1255446
[18] Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Comput. Vis. Image Underst. 93(2), 111-154 (2004) · doi:10.1016/j.cviu.2003.09.001
[19] Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. A K Peters/CRC Press, Boca Raton (2014) · Zbl 1305.68012 · doi:10.1201/b17403
[20] Damiand, G.; Peltier, S.; Fuchs, L.; Brimkov, VE (ed.); etal., Computing homology generators for volumes using minimal generalized maps, 63-74 (2008), Berlin
[21] Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771-784 (1995) · Zbl 0873.55007 · doi:10.1016/0167-8396(95)00016-Y
[22] Dlotko, P., Kaczynski, Tomas, Mrozek, M., Wanner, T.: Coreduction homology algorithm for regular CW-complexes. Discrete Comput. Geom. 46, 361-388 (2010) · Zbl 1229.55001 · doi:10.1007/s00454-010-9303-y
[23] Dobkin, D., Laszlo, M.: Primitives for the manipulation of three-dimensional subdivisions. Algorithmica 5(4), 3-32 (1989) · Zbl 0664.68023 · doi:10.1007/BF01553877
[24] Dumas, J.G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith normal form computations. J. Symb. Comput. 32, 71-99 (2001) · Zbl 1050.65044 · doi:10.1006/jsco.2001.0451
[25] Dupas, A.; Damiand, G.; Coeurjolly, D. (ed.); etal., First results for 3D image segmentation with topological map, 507-518 (2008), Berlin · Zbl 1138.68573
[26] Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511-533 (2002) · Zbl 1011.68152 · doi:10.1007/s00454-002-2885-2
[27] Edmonds, J.: A combinatorial representation for polyhedral surfaces. Not. Am. Math. Soc. 7, A646 (1960)
[28] Elter, H., Lienhardt, P.: Cellular complexes as structured semi-simplicial sets. Int. J. Shape Model. 1(2), 191-217 (1994) · Zbl 0874.68293 · doi:10.1142/S021865439400013X
[29] Fritsch, R., Piccinini, R.A.: Cellular Structures in Topology. Cambridge University Press, Cambridge (1990) · Zbl 0837.55001 · doi:10.1017/CBO9780511983948
[30] Giesbrecht, M.; Cohen, H. (ed.), Probabilistic computation of the Smith normal form of a sparse integer matrix, 173-186 (1996), Berlin · Zbl 0886.65045
[31] González-Díaz, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for object topological representations. Discrete Appl. Math. 157(3), 490-499 (2009) · Zbl 1168.68045 · doi:10.1016/j.dam.2008.05.029
[32] Guibas, L., Stolfi, G.: Primitives for the manipulation of general subdivisions and the computation of voronoi diagrams. Trans. Graph. 4(2), 74-123 (1985) · Zbl 0586.68059 · doi:10.1145/282918.282923
[33] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[34] Hu, S.T.: On the realizability of homotopy groups and their operations. Pac. J. Math. 1, 583-602 (1951) · Zbl 0044.19902 · doi:10.2140/pjm.1951.1.583
[35] Jacque, A.: Constellations et graphes topologiques. Colloq. Math. Soc. Janos Bolyai 2, 657-672 (1970) · Zbl 0213.25901
[36] Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004) · Zbl 1039.55001 · doi:10.1007/b97315
[37] Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Comput. Math. Appl. 34(4), 59-70 (1998) · Zbl 0904.55004 · doi:10.1016/S0898-1221(97)00289-7
[38] Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499-507 (1979) · Zbl 0446.65015 · doi:10.1137/0208040
[39] Lang V., Lienhardt P.: Simplicial sets and triangular patches. In: Proceedings of CGI’96, Pohang, Korea (1996)
[40] Lee, C.N., Poston, T., Rosenfeld, A.: Holes and genus of 2D and 3D digital images. CVGIP: Graph. Model. Image Process. 55(1), 20-47 (1993)
[41] Lee, S.H., Lee, K.: Partial entity structure: a fast and compact non-manifold boundary representation based on partial topological entities. In: 6th ACM Symposium on Solid Modeling and Applications, Ann Arbor, USA (2001)
[42] Lienhardt, P.: Topological models for boundary representation: a comparison with \[n\] n-dimensional generalized maps. Comput. Aided Des. 23(1), 59-82 (1991) · Zbl 0754.65018 · doi:10.1016/0010-4485(91)90082-8
[43] Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275-324 (1994) · Zbl 0821.57016 · doi:10.1142/S0218195994000173
[44] Lienhardt, P., Skapin, X., Bergey, A.: Cartesian product of simplicial and cellular structures. Int. J. Comput. Geom. Appl. 14(3), 115-159 (2004) · Zbl 1088.68174 · doi:10.1142/S0218195904001408
[45] Mac Lane, S.: Homology, Grundlehren Series, Springer 1963. Fourth printing, Classics in Mathematics, Springer (1995) · Zbl 0733.68093
[46] Massey, W.S.: A Basic Course in Algebraic Topology. Graduate Texts in Mathematics. Springer, New York (1991) · Zbl 0725.55001
[47] May, J.P.: Simplicial Objects in Algebraic Topology. Van Nostrand, Princeton (1967) · Zbl 0769.55001
[48] Meine, H., Köthe, U.: The geomap: a unified representation for topology and geometry. In: Brun, L., Vento, M. (eds.) Proceedings of the IAPR Graph-Based Representations in Pattern Recognition. Lecture Notes in Computer Science, vol. 3434, pp. 132-141. Springer, Berlin (2005) · Zbl 1119.68414
[49] Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley, Cambridge (1984) · Zbl 0673.55001
[50] Niethammer, M., Stein, A.N., Kalies, W.D., Pilarczyk, P., Mischaikow, K., Tannenbaum, A.: Analysis of blood vessel topology by cubical homology. In: IEEE Proceedings of the International Conference on Image Processing, vol. 2, pp. 969-972 (2002) · Zbl 1155.65021
[51] Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.-O.: Computation of homology groups and generators. Comput. Graph. 30, 62-69 (2006) · doi:10.1016/j.cag.2005.10.011
[52] Peltier, S., Fuchs, L., Lienhardt, P.: Simploidals sets: definitions, operations and comparison with simplicial sets. Discret. Appl. Math. 157, 542-557 (2009) · Zbl 1189.05175 · doi:10.1016/j.dam.2008.05.032
[53] Serre, J.-P.: Homologie singuliere des espaces fibres. Ann. Math. 54(3), 425-505 (1951) · Zbl 0045.26003 · doi:10.2307/1969485
[54] Spehner, J.-C.: Merging in maps and pavings. Theor. Comput. Sci. 86, 205-232 (1991) · Zbl 0733.68093 · doi:10.1016/0304-3975(91)90018-W
[55] Storjohann, A.; Lakshman, YN (ed.), Near optimal algorithms for computing Smith normal forms of integer matrices, 267-274 (1996), New York · Zbl 0914.65043 · doi:10.1145/236869.237084
[56] Terraz, O., Guimberteau, G., Mérillou, S., Plemenos, D., Ghazanfarpour, D.: 3Gmap L-systems: an application to the modelling of wood. Vis. Comput. 25(2), 165-180 (2009) · doi:10.1007/s00371-008-0212-5
[57] Tutte, W.: Graph Theory. Encyclopaedia of Mathematics and Its Applications. Addison-Wesley, Menlo Park (1984) · Zbl 0554.05001
[58] Untereiner, L., Cazier, D., Bechmann, D.: n-Dimensional multiresolution representation of subdivision meshes with arbitrary topology. Graph. Model. 75(5), 231-246 (2013) · doi:10.1016/j.gmod.2013.03.003
[59] Vidil, F., Damiand, G.: Moka. http://moka-modeller.sourceforge.net/ (2003). Accessed 12 Mar 2014
[60] Vince, A.: Combinatorial maps. J. Comb. Theory Ser. B 34, 1-21 (1983) · Zbl 0491.05053 · doi:10.1016/0095-8956(83)90002-3
[61] Weiler, K.: The radial-edge data structure: a topological representation for non-manifold geometry boundary modeling. In: Proceedings of IFIP WG 5.2 Working Conference, Rensselaerville, USA (1986)
[62] Zomorodian, A., Carlsson, G.: Localized homology. Comput. Geom. 41(3), 126-148 (2008) · Zbl 1155.65021 · doi:10.1016/j.comgeo.2008.02.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.