×

Hybrid stars with sequential phase transitions: the emergence of the \(g_2\) mode. (English) Zbl 1484.85025

Summary: Neutron stars are the densest objects in the Universe, with M \(\sim 1.4 M_\odot\) and \(R\sim 12\) km, and the equation of state associated to their internal composition is still unknown. The extreme conditions to which matter is subjected inside neutron stars could lead to a phase transition in their inner cores, giving rise to a hybrid compact object. The observation of \(2M_\odot\) binary pulsars (PSR J1614-2230, PSR J0343+0432 and PSR J0740+6620) strongly constraints theoretical models of the equation of state. Moreover, the detection of gravitational waves emitted during the binary neutron star merger, GW170817, and its electromagnetic counterpart, GRB170817A, impose additional constraints on the tidal deformability. In this work, we investigate hybrid stars with sequential phase transitions hadron-quark-quark in their cores.{We assume that both phase transitions are sharp and analyse the rapid and slow phase conversion scenarios.} For the outer core, we use modern hadronic equations of state. For the inner core we employ the constant speed of sound parametrization for quark matter. We analyze more than 3000 hybrid equations of state, taking into account the recent observational constraints from neutron stars. The effects of hadron-quark-quark phase transitions on the normal oscillation modes \(f\) and \(g\), are studied under the Cowling relativistic approximation. Our results show that, in the slow conversion regime, a second quark-quark phase transition gives rise to a new \(g_2\) mode. We discuss the observational implications of our results associated to the gravitational waves detection and the possibility of detecting hints of sequential phase transitions and the associated \(g_2\) mode.

MSC:

85A15 Galactic and stellar structure
83C35 Gravitational waves
82B26 Phase transitions (general) in equilibrium statistical mechanics
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics

References:

[1] F. Özel and P. Fréire, 2016 Masses, Radii, and the Equation of State of Neutron Stars, https://doi.org/10.1146/annurev-astro-081915-023322 Ann. Rev. Astron. Astrophys.54 401 [1603.02698] · doi:10.1146/annurev-astro-081915-023322
[2] A.W. Steiner et al., 2018 Constraining the Mass and Radius of Neutron Stars in Globular Clusters, https://doi.org/10.1093/mnras/sty215 Mon. Not. Roy. Astron. Soc.476 421 [1709.05013] · doi:10.1093/mnras/sty215
[3] F. Weber, 1999 Pulsars as astrophysical laboratories for nuclear and particle physics, IOP Publishing, Bristol U.K. · Zbl 0984.85003
[4] M.G. Orsaria et al., 2019 Phase transitions in neutron stars and their links to gravitational waves, https://doi.org/10.1088/1361-6471/ab1d81 J. Phys. G46 073002 [1907.04654] · doi:10.1088/1361-6471/ab1d81
[5] I. F. Ranea-Sandoval, O. M. Guilera, M. Mariani and M. G. Orsaria, 2018 Oscillation modes of hybrid stars within the relativistic Cowling approximation J. Cosmol. Astropart. Phys.2018 12 031 [1807.02166]
[6] M.G. Alford, S. Han and M. Prakash, 2013 Generic conditions for stable hybrid stars, https://doi.org/10.1103/PhysRevD.88.083013 Phys. Rev. D88 083013 [1302.4732] · doi:10.1103/PhysRevD.88.083013
[7] G. Lugones, 2016 From quark drops to quark stars: some aspects of the role of quark matter in compact stars, https://doi.org/10.1140/epja/i2016-16053-x Eur. Phys. J. A52 53 [1508.05548] · doi:10.1140/epja/i2016-16053-x
[8] D.B. Blaschke, H.A. Grigorian, D.E. Alvarez-Castillo and A.S. Ayriyan, 2014 Mass and radius constraints for compact stars and the QCD phase diagram, https://doi.org/10.1088/1742-6596/496/1/012002 J. Phys. Conf. Ser.496 012002 [1402.0478] · doi:10.1088/1742-6596/496/1/012002
[9] S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer and S. Typel, 2015 A new quark-hadron hybrid equation of state for astrophysics. I. High-mass twin compact stars, https://doi.org/10.1051/0004-6361/201425318 Astron. Astrophys.577 A40 [1411.2856] · doi:10.1051/0004-6361/201425318
[10] M.G. Alford and A. Sedrakian, 2017 Compact stars with sequential QCD phase transitions, https://doi.org/10.1103/PhysRevLett.119.161104 Phys. Rev. Lett.119 161104 [1706.01592] · doi:10.1103/PhysRevLett.119.161104
[11] J.J. Li, A. Sedrakian and M. Alford, 2020 Relativistic hybrid stars with sequential first-order phase transitions and heavy-baryon envelopes, https://doi.org/10.1103/PhysRevD.101.063022 Phys. Rev. D101 063022 [1911.00276] · doi:10.1103/PhysRevD.101.063022
[12] M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, 2008 Color superconductivity in dense quark matter, https://doi.org/10.1103/RevModPhys.80.1455 Rev. Mod. Phys.80 1455 [0709.4635] · doi:10.1103/RevModPhys.80.1455
[13] I.F. Ranea-Sandoval, S. Han, M.G. Orsaria, G.A. Contrera, F. Weber and M.G. Alford, 2016 Constant-sound-speed parametrization for Nambu&textendash;Jona-Lasinio models of quark matter in hybrid stars, https://doi.org/10.1103/PhysRevC.93.045812 Phys. Rev. C93 045812 [1512.09183] · doi:10.1103/PhysRevC.93.045812
[14] P. Demorest, T. Pennucci, S. Ransom, M. Roberts and J. Hessels, 2010 Shapiro Delay Measurement of A Two Solar Mass Neutron Star, https://doi.org/10.1038/nature09466 Nature467 1081 [1010.5788] · doi:10.1038/nature09466
[15] J. Antoniadis et al., 2013 A Massive Pulsar in a Compact Relativistic Binary, https://doi.org/10.1126/science.1233232 Science340 448 [1304.6875] · doi:10.1126/science.1233232
[16] H. Cromartie et al., 2020 Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, https://doi.org/10.1038/s41550-019-0880-2 Nature Astron.4 72 [1904.06759] · doi:10.1038/s41550-019-0880-2
[17] J.M. Lattimer and M. Prakash, 2004 The physics of neutron stars, https://doi.org/10.1126/science.1090720 Science304 536 [astro-ph/0405262] · doi:10.1126/science.1090720
[18] J.M. Lattimer and A.W. Steiner, 2014 Neutron Star Masses and Radii from Quiescent Low-Mass X-ray Binaries, https://doi.org/10.1088/0004-637X/784/2/123 Astrophys. J.784 123 [1305.3242] · doi:10.1088/0004-637X/784/2/123
[19] N. Andersson et al., 2011 Gravitational waves from neutron stars: Promises and challenges, https://doi.org/10.1007/s10714-010-1059-4 Gen. Rel. Grav.43 409 [0912.0384] · Zbl 1208.85003 · doi:10.1007/s10714-010-1059-4
[20] P.D. Lasky, 2015 Gravitational Waves from Neutron Stars: A Review, https://doi.org/10.1017/pasa.2015.35 Publ. Astron. Soc. Aust.32 e034 · doi:10.1017/pasa.2015.35
[21] LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR and SKA South Africa/MeerKAT collaborations, 2017 Multi-messenger Observations of a Binary Neutron Star Merger, https://doi.org/10.3847/2041-8213/aa91c9 Astrophys. J. Lett.848 L12 [1710.05833] . · doi:10.3847/2041-8213/aa91c9
[22] LIGO Scientific and Virgo collaborations, 2017 GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[23] C. Raithel, F. Özel and D. Psaltis, 2018 Tidal deformability from GW170817 as a direct probe of the neutron star radius, https://doi.org/10.3847/2041-8213/aabcbf Astrophys. J. Lett.857 L23 [1803.07687] · doi:10.3847/2041-8213/aabcbf
[24] E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, 2018 Gravitational-wave constraints on the neutron-star-matter Equation of State, https://doi.org/10.1103/PhysRevLett.120.172703 Phys. Rev. Lett.120 172703 [1711.02644] · doi:10.1103/PhysRevLett.120.172703
[25] E. Annala, T. Gorda, A. Kurkela, J. Nättilä and A. Vuorinen, 2020 Evidence for quark-matter cores in massive neutron stars, https://doi.org/10.1038/s41567-020-0914-9 Nat. Phys.16 907 [1903.09121] · doi:10.1038/s41567-020-0914-9
[26] B.P. Abbott et al., 2020 GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ \(3.4 M_⊙\), https://doi.org/10.3847/2041-8213/ab75f5 Astrophys. J.892 L3 [2001.01761] · doi:10.3847/2041-8213/ab75f5
[27] T.E. Riley et al., 2019 A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation, https://doi.org/10.3847/2041-8213/ab481c Astrophys. J. Lett.887 L21 [1912.05702] · doi:10.3847/2041-8213/ab481c
[28] M.C. Miller et al., 2019 PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter, https://doi.org/10.3847/2041-8213/ab50c5 Astrophys. J. Lett.887 L24 [1912.05705] · doi:10.3847/2041-8213/ab50c5
[29] K. Glampedakis and L. Gualtieri, 2018 Gravitational waves from single neutron stars: an advanced detector era survey, https://doi.org/10.1007/978-3-319-97616-7_12 Astrophys. Space Sci. Libr.457 673 [1709.07049] · doi:10.1007/978-3-319-97616-7_12
[30] N. Andersson and K.D. Kokkotas, 1998 Towards gravitational wave asteroseismology, https://doi.org/10.1046/j.1365-8711.1998.01840.x Mon. Not. Roy. Astron. Soc.299 1059 [gr-qc/9711088] · doi:10.1046/j.1365-8711.1998.01840.x
[31] J.P. Pereira, C.V. Flores and G. Lugones, 2018 Phase transition effects on the dynamical stability of hybrid neutron stars, https://doi.org/10.3847/1538-4357/aabfbf Astrophys. J.860 12 [1706.09371] · doi:10.3847/1538-4357/aabfbf
[32] M.A. Stephanov, 2004 QCD phase diagram and the critical point, https://doi.org/10.1142/S0217751X05027965 Prog. Theor. Phys. Suppl.153 139 [hep-ph/0402115] · doi:10.1142/S0217751X05027965
[33] M.A. Stephanov, 2005 Int. J. Mod. Phys. A20 4387 · doi:10.1142/S0217751X05027965
[34] H. Caines, 2017 The Search for Critical Behavior and Other Features of the QCD Phase Diagram — Current Status and Future Prospects, https://doi.org/10.1016/j.nuclphysa.2017.05.116 Nucl. Phys. A967 121 · doi:10.1016/j.nuclphysa.2017.05.116
[35] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn and V.F. Weisskopf, 1974 A New Extended Model of Hadrons, https://doi.org/10.1103/PhysRevD.9.3471 Phys. Rev. D9 3471 · doi:10.1103/PhysRevD.9.3471
[36] G.A. Contrera, M. Orsaria and N.N. Scoccola, 2010 Nonlocal Polyakov-Nambu-Jona-Lasinio model with wavefunction renormalization at finite temperature and chemical potential, https://doi.org/10.1103/PhysRevD.82.054026 Phys. Rev. D82 054026 [1006.4639] · doi:10.1103/PhysRevD.82.054026
[37] M. Orsaria, H. Rodrigues, F. Weber and G.A. Contrera, 2013 Quark-hybrid matter in the cores of massive neutron stars, https://doi.org/10.1103/PhysRevD.87.023001 Phys. Rev. D87 023001 [1212.4213] · doi:10.1103/PhysRevD.87.023001
[38] I.F. Ranea-Sandoval et al., 2019 Effects of Hadron-Quark Phase Transitions in Hybrid Stars within the NJL Model, https://doi.org/10.3390/sym11030425 Symmetry18 425 [1903.11974] · doi:10.3390/sym11030425
[39] A.V. Nefediev, Y.A. Simonov and M.A. Trusov, 2019 Deconfinement and Quark-Gluon Plasma, https://doi.org/10.1142/S0218301309012768 Int. J. Mod. Phys. E11 549 [0902.0125] · doi:10.1142/S0218301309012768
[40] M. Mariani, M. Orsaria and H. Vucetich, 2017 Constant entropy hybrid stars: a first approximation of cooling evolution, https://doi.org/10.1051/0004-6361/201629315 Astron. Astrophys.601 A21 [1607.05200] · doi:10.1051/0004-6361/201629315
[41] M. Mariani, M.G. Orsaria, I.F. Ranea-Sandoval and O.M. Guilera, 2019 Hybrid magnetized stars within the Field Correlator Method Bol. Asoc. Arg. Astron.61 231 [1902.02814]
[42] D.N. Voskresensky, M. Yasuhira and T. Tatsumi, 2003 Charge screening at first order phase transitions and hadron quark mixed phase, https://doi.org/10.1016/S0375-9474(03)01313-7 Nucl. Phys. A723 291 [nucl-th/0208067] · doi:10.1016/S0375-9474(03)01313-7
[43] M.B. Pinto, V. Koch and J. Randrup, 2012 The Surface Tension of Quark Matter in a Geometrical Approach, https://doi.org/10.1103/PhysRevC.86.025203 Phys. Rev. C86 025203 [1207.5186] · doi:10.1103/PhysRevC.86.025203
[44] G. Lugones, A.G. Grunfeld and M. Al Ajmi, 2013 Surface tension and curvature energy of quark matter in the Nambu-Jona-Lasinio model, https://doi.org/10.1103/PhysRevC.88.045803 Phys. Rev. C88 045803 [1308.1452] · doi:10.1103/PhysRevC.88.045803
[45] G. Baym, C. Pethick and P. Sutherland, 1971 The Ground state of matter at high densities: Equation of state and stellar models, https://doi.org/10.1086/151216 Astrophys. J.170 299 · doi:10.1086/151216
[46] G. Baym, H.A. Bethe and C. Pethick, 1971 Neutron star matter, https://doi.org/10.1016/0375-9474(71)90281-8 Nucl. Phys. A175 225 · doi:10.1016/0375-9474(71)90281-8
[47] M. Fortin et al., 2016 Neutron star radii and crusts: uncertainties and unified equations of state, https://doi.org/10.1103/PhysRevC.94.035804 Phys. Rev. C94 035804 [1604.01944] · doi:10.1103/PhysRevC.94.035804
[48] W.M. Spinella, 2017 A Systematic Invuestigation of Exotic Matter in Neutron Stars, The Claremont Graduate University, Claremont U.S.A.
[49] S. Typel, G. Röpke, T. Klähn, D. Blaschke and H.H. Wolter, 2010 Composition and thermodynamics of nuclear matter with light clusters, https://doi.org/10.1103/PhysRevC.81.015803 Phys. Rev. C81 015803 [0908.2344] · doi:10.1103/PhysRevC.81.015803
[50] W.M. Spinella and F. Weber, 2019 Hyperonic Neutron Star Matter in Light of GW170817, https://doi.org/10.1002/asna.201913579 Astron. Nachr.340 145 [1812.03600] · doi:10.1002/asna.201913579
[51] I.F. Ranea-Sandoval, M.G. Orsaria, S. Han, F. Weber and W.M. Spinella, 2017 Color superconductivity in compact stellar hybrid configurations, https://doi.org/10.1103/PhysRevC.96.065807 Phys. Rev. C96 065807 · doi:10.1103/PhysRevC.96.065807
[52] G. Malfatti, M.G. Orsaria, G.A. Contrera, F. Weber and I.F. Ranea-Sandoval, 2019 Hot quark matter and (proto-) neutron stars, https://doi.org/10.1103/PhysRevC.100.015803 Phys. Rev. C100 015803 [1907.06597] · doi:10.1103/PhysRevC.100.015803
[53] G. Malfatti, M.G. Orsaria, I.F. Ranea-Sandoval, G.A. Contrera and F. Weber, 2020 Delta baryons and diquark formation in the cores of neutron stars, https://doi.org/10.1103/PhysRevD.102.063008 Phys. Rev. D102 063008 [2008.06459] · doi:10.1103/PhysRevD.102.063008
[54] J. Bardeen, L.N. Cooper and J.R. Schrieffer, 1957 Theory of superconductivity, https://doi.org/10.1103/PhysRev.108.1175 Phys. Rev.1081175 · Zbl 0090.45401 · doi:10.1103/PhysRev.108.1175
[55] I.A. Shovkovy, 2005 Two lectures on color superconductivity, https://doi.org/10.1007/s10701-005-6440-x Found. Phys.35 1309 [nucl-th/0410091] · Zbl 1102.81321 · doi:10.1007/s10701-005-6440-x
[56] M. Buballa, 2005 NJL model analysis of quark matter at large density, https://doi.org/10.1016/j.physrep.2004.11.004 Phys. Rept.407 205 [hep-ph/0402234] · doi:10.1016/j.physrep.2004.11.004
[57] D.E. Alvarez-Castillo and D.B. Blaschke, 2017 High-mass twin stars with a multipolytrope equation of state, https://doi.org/10.1103/PhysRevC.96.045809 Phys. Rev. C96 045809 [1703.02681] · doi:10.1103/PhysRevC.96.045809
[58] G. Montana, L. Tolos, M. Hanauske and L. Rezzolla, 2019 Constraining twin stars with GW170817, https://doi.org/10.1103/PhysRevD.99.103009 Phys. Rev. D99 103009 [1811.10929] · doi:10.1103/PhysRevD.99.103009
[59] S. Bhattacharyya, 2020 The permanent ellipticity of the neutron star in PSR J1023+0038, https://doi.org/10.1093/mnras/staa2304 Mon. Not. Roy. Astron. Soc.498 728 [2008.01716] · doi:10.1093/mnras/staa2304
[60] LIGO Scientific, Virgo collaboration, 2020 Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars, https://doi.org/10.3847/2041-8213/abb655 Astrophys. J. Lett.902 L21 [2007.14251] · doi:10.3847/2041-8213/abb655
[61] R.C. Tolman, 1939 Static solutions of Einstein’s field equations for spheres of fluid, https://doi.org/10.1103/PhysRev.55.364 Phys. Rev.55 364 · Zbl 0020.28407 · doi:10.1103/PhysRev.55.364
[62] J.R. Oppenheimer and G.M. Volkoff, 1939 On Massive neutron cores, https://doi.org/10.1103/PhysRev.55.374 Phys. Rev.55374 · Zbl 0020.28501 · doi:10.1103/PhysRev.55.374
[63] J. Takátsy and P. Kovács, 2020 Comment on “Tidal Love numbers of neutron and self-bound quark stars”, https://doi.org/10.1103/PhysRevD.102.028501 Phys. Rev. D102 028501 [2007.01139] · doi:10.1103/PhysRevD.102.028501
[64] U.H. Gerlach, 1968 Equation of State at Supranuclear Densities and the Existence of a Third Family of Superdense Stars, https://doi.org/10.1103/PhysRev.172.1325 Phys. Rev.1721325 · doi:10.1103/PhysRev.172.1325
[65] K. Schertler, C. Greiner, J. Schaffner-Bielich and M.H. Thoma, 2000 Quark phases in neutron stars and a “third family” of compact stars as a signature for phase transitions, https://doi.org/10.1016/S0375-9474(00)00305-5 Nucl. Phys. A677 463 [astro-ph/0001467] · doi:10.1016/S0375-9474(00)00305-5
[66] S. Banik and D. Bandyopadhyay, 2003 Color superconducting quark matter core in the third family of compact stars, https://doi.org/10.1103/PhysRevD.67.123003 Phys. Rev. D67 123003 [astro-ph/0212340] · doi:10.1103/PhysRevD.67.123003
[67] M. Sieniawska, W. Turczanski, M. Bejger and J.L. Zdunik, 2019 Tidal deformability and other global parameters of compact stars with strong phase transitions, https://doi.org/10.1051/0004-6361/201833969 Astron. Astrophys.622 A174 [1807.11581] · doi:10.1051/0004-6361/201833969
[68] D.E. Alvarez-Castillo, D.B. Blaschke, A.G. Grunfeld and V.P. Pagura, 2019 Third family of compact stars within a nonlocal chiral quark model equation of state, https://doi.org/10.1103/PhysRevD.99.063010 Phys. Rev. D99 063010 [1805.04105] · doi:10.1103/PhysRevD.99.063010
[69] A. Ayriyan, N.U. Bastian, D. Blaschke, H. Grigorian, K. Maslov and D.N. Voskresensky, 2018 Robustness of third family solutions for hybrid stars against mixed phase effects, https://doi.org/10.1103/PhysRevC.97.045802 Phys. Rev. C97 045802 [1711.03926] · doi:10.1103/PhysRevC.97.045802
[70] K. Maslov et al., 2019 Hybrid equation of state with pasta phases and third family of compact stars, https://doi.org/10.1103/PhysRevC.100.025802 Phys. Rev. C100 025802 [1812.11889] · doi:10.1103/PhysRevC.100.025802
[71] K.D. Kokkotas and N. Andersson, 2002 Oscillation and instabilities of relativistic stars, https://doi.org/10.1007/978-88-470-2101-3_9 Recent Dev. Gen. Rel. 121 [gr-qc/0109054] · doi:10.1007/978-88-470-2101-3_9
[72] K.D. Kokkotas and B.G. Schmidt, 1999 Quasinormal modes of stars and black holes, https://doi.org/10.12942/lrr-1999-2 Living Rev. Rel.2 2 [gr-qc/9909058] · Zbl 0984.83002 · doi:10.12942/lrr-1999-2
[73] K.D. Kokkotas and B.F. Schutz, 1992 W-modes: A New family of normal modes of pulsating relativistic stars Mon Not. Roy. Astron. Soc. 255 119 · doi:10.1093/mnras/255.1.119
[74] L.S. Finn, 1987 G-modes in zero-temperature neutron stars, https://doi.org/10.1093/mnras/227.2.265 Mon. Not. Roy. Astron. Soc.227 265 · doi:10.1093/mnras/227.2.265
[75] L. Tonetto and G. Lugones, 2020 Discontinuity gravity modes in hybrid stars: assessing the role of rapid and slow phase conversions, https://doi.org/10.1103/PhysRevD.101.123029 Phys. Rev. D101 123029 [2003.01259] · doi:10.1103/PhysRevD.101.123029
[76] G. Miniutti, J.A. Pons, E. Berti, L. Gualtieri and V. Ferrari, 2003 Non-radial oscillation modes as a probe of density discontinuities in neutron stars, https://doi.org/10.1046/j.1365-8711.2003.06057.x Mon. Not. Roy. Astron. Soc.338 389 [astro-ph/0206142] · doi:10.1046/j.1365-8711.2003.06057.x
[77] L.S. Finn, 1988 Relativistic stellar pulsations in the Cowling approximation, https://doi.org/10.1093/mnras/232.2.259 Mon. Not. Roy. Astron. Soc.232 259 · Zbl 0663.76157 · doi:10.1093/mnras/232.2.259
[78] C. Vásquez Flores and G. Lugones, 2014 Discriminating hadronic and quark stars through gravitational waves of fluid pulsation modes, https://doi.org/10.1088/0264-9381/31/15/155002 Class. Quant. Grav.31 155002 [1310.0554] · Zbl 1296.83021 · doi:10.1088/0264-9381/31/15/155002
[79] C. Chirenti, G.H. de Souza and W. Kastaun, 2015 Fundamental oscillation modes of neutron stars: Validity of universal relations, https://doi.org/10.1103/PhysRevD.91.044034 Phys. Rev. D31 044034 [1501.02970] · doi:10.1103/PhysRevD.91.044034
[80] H. Sotani, K. Tominaga and K.-i. Maeda, 2002 Density discontinuity of a neutron star and gravitational waves, https://doi.org/10.1103/PhysRevD.65.024010 Phys. Rev. D65 024010 [gr-qc/0108060] · doi:10.1103/PhysRevD.65.024010
[81] S.L. Detweiler and L. Lindblom, 1985 On the nonradial pulsations of general relativistic stellar models, https://doi.org/10.1086/163127 Astrophys. J.292 12 · doi:10.1086/163127
[82] H. Sotani, N. Yasutake, T. Maruyama and T. Tatsumi, 2011 Signatures of hadron-quark mixed phase in gravitational waves, https://doi.org/10.1103/PhysRevD.83.024014 Phys. Rev. D83 024014 [1012.4042] · doi:10.1103/PhysRevD.83.024014
[83] P.N. McDermott, 1990 Density Discontinuity G-Modes Mon. Not. Roy. Astron. Soc.245 508
[84] K.D. Kokkotas, T.A. Apostolatos and N. Andersson, 2001 The Inverse problem for pulsating neutron stars: A “Fingerprint analysis” for the supranuclear equation of state, https://doi.org/10.1046/j.1365-8711.2001.03945.x Mon. Not. Roy. Astron. Soc.320 307 [gr-qc/9901072] · doi:10.1046/j.1365-8711.2001.03945.x
[85] LIGO Scientific collaboration, 2017 Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, https://doi.org/10.1088/1361-6382/aa51f4 Class. Quant. Grav.34 044001 [1607.08697] · doi:10.1088/1361-6382/aa51f4
[86] M. Ferreira, R. Câmara Pereira and C. Providência, 2020 Quark matter in light neutron stars, https://doi.org/10.1103/PhysRevD.102.083030 Phys. Rev. D102 083030 [2008.12563] · doi:10.1103/PhysRevD.102.083030
[87] A. Reisenegger and P. Goldreich, 1994 Excitation of Neutron Star Normal Modes during Binary Inspiral, https://doi.org/10.1086/174105 Astrophys. J.426 688 · doi:10.1086/174105
[88] W. Xu and D. Lai, 2017 Resonant Tidal Excitation of Oscillation Modes in Merging Binary Neutron Stars: Inertial-Gravity Modes, https://doi.org/10.1103/PhysRevD.96.083005 Phys. Rev. D96 083005 [1708.01839] · doi:10.1103/PhysRevD.96.083005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.