×

Smooth limits of plane curves of prime degree and Markov numbers. (Limites lisses de courbes planes de degré premier et nombres de Markov.) (English. French summary) Zbl 07881509

Summary: In dimension at least 3, Mori asked if every smooth proper limit of a family of prime degree hypersurfaces is still a hypersurface. In dimensions 1 and 2, this is not the case. For example, it is well known that quintic plane curves can degenerate to hyperelliptic curves, and Horikawa constructed smooth limits of quintic surfaces that do not embed in \(\mathbb{P}^3\). In this paper, we propose a conjecture explaining the one-dimensional examples using Hacking and Prokhorov’s work on \(\mathbb{Q}\)-Gorenstein limits of the projective plane and prove the conjecture for degree \(5\). As a consequence of the first conjecture, we conjecture that, if \(p\) is a prime number that is not a Markov number, any smooth projective limit of plane curves of degree \(p\) is a plane curve. We prove this conjecture for degree \(7\) curves and provide evidence for the conjecture by exhibiting non-planar smooth limits of families of degree \(d\) curves for any \(d\) that is a multiple of a Markov number.

MSC:

14H10 Families, moduli of curves (algebraic)
14H50 Plane and space curves
14J10 Families, moduli, classification: algebraic theory

Software:

OEIS

References:

[1] Ascher, Kenneth; Bejleri, Dori; Inchiostro, Giovanni; Patakfalvi, Zsolt, Wall crossing for moduli of stable log pairs, Ann. of Math. (2), 198, 2, 825-866, 2023 · Zbl 1539.14061 · doi:10.4007/annals.2023.198.2.7
[2] Ascher, Kenneth; DeVleming, Kristin; Liu, Yuchen, Wall crossing for K‐moduli spaces of plane curves, Proc. London Math. Soc. (3), 128, 2024 · doi:10.1112/plms.12615
[3] Fernández de Bobadilla, Javier; Luengo, Ignacio; Melle Hernández, Alejandro; Némethi, Andras, Real and complex singularities, Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, 31-45, 2007, Birkhäuser: Birkhäuser, Basel · Zbl 1120.14019 · doi:10.1007/978-3-7643-7776-2_4
[4] Borodzik, Maciej; Livingston, Charles, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma, 2, 23 p. pp., 2014 · Zbl 1325.14047 · doi:10.1017/fms.2014.28
[5] Brieskorn, Egbert, Ein Satz über die komplexen Quadriken, Math. Ann., 155, 184-193, 1964 · Zbl 0119.37703 · doi:10.1007/BF01344158
[6] Brieskorn, Egbert; Knörrer, Horst, Plane algebraic curves, 1986, Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG, Basel · Zbl 0588.14019 · doi:10.1007/978-3-0348-5097-1
[7] DeVleming, Kristin, Moduli of surfaces in \(\mathbb{P}^3\), Compositio Math., 158, 6, 1329-1374, 2022 · Zbl 1503.14031 · doi:10.1112/s0010437x22007552
[8] Ferrand, Daniel, Conducteur, descente et pincement, Bull. Soc. math. France, 131, 4, 553-585, 2003 · Zbl 1058.14003 · doi:10.24033/bsmf.2455
[9] Fujita, Takao, Classification theories of polarized varieties, 155, 1990, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0743.14004 · doi:10.1017/CBO9780511662638
[10] Griffin, Edmond E., Families of quintic surfaces and curves, Compositio Math., 55, 1, 33-62, 1985 · Zbl 0578.14033
[11] Hacking, Paul, Compact moduli of plane curves, Duke Math. J., 124, 2, 213-257, 2004 · Zbl 1060.14034 · doi:10.1215/S0012-7094-04-12421-2
[12] Hacking, Paul; Prokhorov, Yuri, Smoothable del Pezzo surfaces with quotient singularities, Compositio Math., 146, 1, 169-192, 2010 · Zbl 1194.14054 · doi:10.1112/S0010437X09004370
[13] Hassett, Brendan, Stable log surfaces and limits of quartic plane curves, Manuscripta Math., 100, 4, 469-487, 1999 · Zbl 0973.14014 · doi:10.1007/s002290050213
[14] Horikawa, Eiji, On deformations of quintic surfaces, Proc. Japan Acad., 49, 377-379, 1973 · Zbl 0273.14015
[15] Hwang, Jun-Muk, Nondeformability of the complex hyperquadric, Invent. Math., 120, 2, 317-338, 1995 · Zbl 0846.32021 · doi:10.1007/BF01241131
[16] Karpov, B. V.; Nogin, D. Yu., Three-block exceptional sets on del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat., 62, 3, 3-38, 1998 · Zbl 0949.14026 · doi:10.1070/im1998v062n03ABEH000205
[17] Kobayashi, Shoshichi; Ochiai, Takushiro, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13, 31-47, 1973 · Zbl 0261.32013 · doi:10.1215/kjm/1250523432
[18] Kollár, János, Maps between local Picard groups, Algebraic Geom., 3, 4, 461-495, 2016 · Zbl 1376.14036 · doi:10.14231/AG-2016-022
[19] Kollár, János, Families of varieties of general type, 231, 2023, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 07658187 · doi:10.1017/9781009346115
[20] Kollár, János; Mori, Shigefumi, Birational geometry of algebraic varieties, 134, 1998, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[21] Liu, Tiankai, On planar rational cuspidal curves, 2014 · Zbl 1358.14006
[22] Manetti, Marco, Normal degenerations of the complex projective plane, J. reine angew. Math., 419, 89-118, 1991 · Zbl 0719.14023 · doi:10.1515/crll.1991.419.89
[23] Markoff, A., Sur les formes quadratiques binaires indéfinies, Math. Ann., 17, 3, 379-399, 1880 · JFM 12.0143.02 · doi:10.1007/BF01446234
[24] Matsuoka, Takashi; Sakai, Fumio, The degree of rational cuspidal curves, Math. Ann., 285, 2, 233-247, 1989 · Zbl 0661.14023 · doi:10.1007/BF01443516
[25] Moe, Torgunn Karoline, Rational cuspidal curves, 2008
[26] Mori, Shigefumi, On a generalization of complete intersections, J. Math. Kyoto Univ., 15, 3, 619-646, 1975 · Zbl 0332.14019 · doi:10.1215/kjm/1250523007
[27] Orevkov, S. Yu., On rational cuspidal curves. I. Sharp estimate for degree via multiplicities, Math. Ann., 324, 4, 657-673, 2002 · Zbl 1014.14010 · doi:10.1007/s002080000191
[28] Ottem, John Christian; Schreieder, Stefan, On deformations of quintic and septic hypersurfaces, J. Math. Pures Appl. (9), 135, 140-158, 2020 · Zbl 1432.14035 · doi:10.1016/j.matpur.2019.12.013
[29] Sloane, Neil J. A.; The OEIS Foundation Inc., The on-line encyclopedia of integer sequences, Seq. A178444, 2020
[30] Stacks Project Authors, The Stacks Project, 2019
[31] Zagier, Don, On the number of Markoff numbers below a given bound, Math. Comp., 39, 160, 709-723, 1982 · Zbl 0501.10015 · doi:10.2307/2007348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.