×

On the universal central extension of hyperelliptic current algebras. (English) Zbl 1383.17012

Summary: Let \(p(t)\in \mathbb C[t]\) be a polynomial with distinct roots and nonzero constant term. We describe, using Faà de Bruno’s formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras \(\mathfrak{g}\otimes R\) whose coordinate ring is of the form \(R=\mathbb C[t,t^{-1},u| u^2=p(t)]\).

MSC:

17B65 Infinite-dimensional Lie (super)algebras
17B56 Cohomology of Lie (super)algebras

References:

[1] [Arbogast] L. F. A Arbogast, \newblockDu Calcul des Derivations, \newblock1800.
[2] Awata, Hidetoshi; Tsuchiya, Akihiro; Yamada, Yasuhiko, Integral formulas for the WZNW correlation functions, Nuclear Phys. B, 365, 3, 680-696 (1991) · doi:10.1016/0550-3213(91)90515-Y
[3] Bueno, Andr{\'e}; Cox, Ben; Futorny, Vyacheslav, Free field realizations of the elliptic affine Lie algebra \(\mathfrak{sl}(2,{\bf R})\oplus (\Omega_R/d{\rm R})\), J. Geom. Phys., 59, 9, 1258-1270 (2009) · Zbl 1217.17015 · doi:10.1016/j.geomphys.2009.06.007
[4] Bell, E. T., Partition polynomials, Ann. of Math. (2), 29, 1-4, 38-46 (1927/28) · JFM 53.0132.02 · doi:10.2307/1967979
[5] Bremner, Murray, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable, Canad. Math. Bull., 37, 1, 21-28 (1994) · Zbl 0807.17019 · doi:10.4153/CMB-1994-004-8
[6] Bremner, Murray, Universal central extensions of elliptic affine Lie algebras, J. Math. Phys., 35, 12, 6685-6692 (1994) · Zbl 0839.17017 · doi:10.1063/1.530700
[7] Bremner, Murray, Four-point affine Lie algebras, Proc. Amer. Math. Soc., 123, 7, 1981-1989 (1995) · Zbl 0833.17023 · doi:10.2307/2160931
[8] Cox, Ben; Futorny, Vyacheslav, DJKM algebras I: their universal central extension, Proc. Amer. Math. Soc., 139, 10, 3451-3460 (2011) · Zbl 1269.17009 · doi:10.1090/S0002-9939-2011-10906-7
[9] Cox, Ben; Futorny, Vyacheslav; Tirao, Juan A., DJKM algebras and non-classical orthogonal polynomials, J. Differential Equations, 255, 9, 2846-2870 (2013) · Zbl 1302.17034 · doi:10.1016/j.jde.2013.07.020
[10] Cox, Ben; Guo, Xiangqian; Lu, Rencai; Zhao, Kaiming, \(n\)-point Virasoro algebras and their modules of densities, Commun. Contemp. Math., 16, 3, 1350047, 27 pp. (2014) · Zbl 1355.17029 · doi:10.1142/S0219199713500478
[11] [CGLZ] Ben Cox, Xianquan Guo, Rencai Lu, and Kaiming Zhao, \newblockSimple superelliptic Lie algebras, \newblock Math arXiv:1412.7777, 2015.
[12] Cox, Ben; Jurisich, Elizabeth, Realizations of the three-point Lie algebra \(\mathfrak{sl}(2,{\mathcal{R}})\oplus (\Omega_{{\mathcal{R}}}/d{\mathcal{R}})\), Pacific J. Math., 270, 1, 27-47 (2014) · Zbl 1355.17030 · doi:10.2140/pjm.2014.270.27
[13] Cox, Ben, Realizations of the four point affine Lie algebra \(\mathfrak{sl}(2,R)\oplus (\Omega_R/dR)\), Pacific J. Math., 234, 2, 261-289 (2008) · Zbl 1151.81046 · doi:10.2140/pjm.2008.234.261
[14] [dB] M. Fa\`a. de Bruno, \newblockSur une nouvelle formule de calcul differentiel, \newblockThe Quarterly Journal of Pure and Applied Mathematics, 1:359-360, 1857.
[15] Etingof, Pavel I.; Frenkel, Igor B.; Kirillov, Alexander A., Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs 58, xiv+198 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0903.17006 · doi:10.1090/surv/058
[16] Feigin, Boris; Frenkel, Edward; Reshetikhin, Nikolai, Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys., 166, 1, 27-62 (1994) · Zbl 0812.35103
[17] Frenkel, Edward, Wakimoto modules, opers and the center at the critical level, Adv. Math., 195, 2, 297-404 (2005) · Zbl 1129.17014 · doi:10.1016/j.aim.2004.08.002
[18] Kassel, Christian, K\"ahler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra. Proceedings of the Luminy conference on algebraic \(K\)-theory (Luminy, 1983), 34, 2-3, 265-275 (1984) · Zbl 0549.17009 · doi:10.1016/0022-4049(84)90040-9
[19] Kassel, C.; Loday, J.-L., Extensions centrales d’alg\`ebres de Lie, Ann. Inst. Fourier (Grenoble), 32, 4, 119-142 (1983) (1982) · Zbl 0485.17006
[20] Krichever, Igor Moiseevich; Novikov, S. P., Algebras of Virasoro type, Riemann surfaces and strings in Minkowski space, Funktsional. Anal. i Prilozhen., 21, 4, 47-61, 96 (1987) · Zbl 0659.17012
[21] Krichever, Igor Moiseevich; Novikov, S. P., Algebras of Virasoro type, Riemann surfaces and the structures of soliton theory, Funktsional. Anal. i Prilozhen., 21, 2, 46-63 (1987) · Zbl 0634.17010
[22] Krichever, Igor Moiseevich; Novikov, S. P., Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces, Funktsional. Anal. i Prilozhen.. Funct. Anal. Appl., 23 23, 1, 19-33 (1989) · Zbl 0684.17012 · doi:10.1007/BF01078570
[23] Kuroki, Gen, Fock space representations of affine Lie algebras and integral representations in the Wess-Zumino-Witten models, Comm. Math. Phys., 142, 3, 511-542 (1991) · Zbl 0768.17010
[24] Schlichenmaier, Martin, Krichever-Novikov type algebras, De Gruyter Studies in Mathematics 53, xvi+360 pp. (2014), De Gruyter, Berlin · Zbl 1347.17001 · doi:10.1515/9783110279641
[25] Sheinman, Oleg K., Current algebras on Riemann surfaces, de Gruyter Expositions in Mathematics 58, xiv+150 pp. (2012), Walter de Gruyter GmbH & Co. KG, Berlin · Zbl 1258.81002 · doi:10.1515/9783110264524
[26] Schechtman, V. V.; Varchenko, A. N., Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys., 20, 4, 279-283 (1990) · Zbl 0719.35079 · doi:10.1007/BF00626523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.