×

Spectral decomposition of invariant differential operators on certain nilpotent homogeneous spaces. (English) Zbl 0784.22003

Let \(K\) be an analytic subgroup of a connected, simply connected nilpotent Lie group \(G\). Given a unitary character \(\chi\) of \(K\), the orbit method tells us how to describe the canonical central decomposition of the monomial representation \(\tau = \text{ind}^ G_ K\chi\) [cf. L. Corwin, P. Greenleaf and G. Grélaud: Trans. Am. Math. Soc. 304, 549-583 (1987; Zbl 0629.22005)]. Now the authors continue their study for the case where \(\tau\) has finite multiplicities.
Let \(C^ \infty(G,\tau) = \{\psi\in C^ \infty(G): \psi(kx) = \chi(k)\psi(x)\) for all \(k \in K\), \(g\in C\}\) and consider the algebra \(\mathbb{D}_ \tau(K\setminus G)\) of differential operators on \(G\), taking \(C^ \infty(G,\tau)\) into itself and commuting there with the right action of \(\tau\). Let \(\mathfrak k\) (resp. \(\mathfrak g\)) be the Lie algebra of \(K\) (resp. \(G\)). It follows that there is an \(f\in {\mathfrak g}^*\) such that \(\chi(\text{exp }Y) = e^{2\pi if(Y)}\) for all \(Y\in {\mathfrak k}\). Suppose that \(\tau\) has finite multiplicities. Then the authors showed [in Commun. Pure Appl. Math. 45, 681-748 (1992)] the commutativity of \(\mathbb{D}_ \tau(K\setminus G)\), which was in fact isomorphic to a generating subalgebra of the field \(\mathbb{C}(\Omega_ \tau)^ K\) of \(\text{Ad}^*(K)\)-invariant rational functions on \(\Omega_ \tau = f+{\mathfrak k}^ \perp\subset {\mathfrak g}^*\). In this paper, they assume the existence of a subalgebra which polarizes generic \(\xi \in \Omega_ \tau\) and is normalized by \(\mathfrak k\). This condition enables them to take a suitable Malcev basis of \(\mathfrak g\), and to analyze the corresponding Malcev-Fourier transform in order to get the following main results. \(\mathbb{D}_ \tau(K\setminus G)\) is isomorphic to the algebra \(\mathbb{C}[\Omega_ \tau]^ K\) of \(\text{Ad}^*(K)\)-invariant polynomials on \(\Omega_ \tau\). Furthermore every nonzero element of \(\mathbb{D}_ \tau(K\setminus G)\) has a tempered fundamental solution. The paper includes various examples which are explicitly calculated.

MSC:

22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
43A85 Harmonic analysis on homogeneous spaces
22E25 Nilpotent and solvable Lie groups
22E30 Analysis on real and complex Lie groups

Citations:

Zbl 0629.22005
Full Text: DOI

References:

[1] Atiyah, M. F., Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23, 145-150 (1970) · Zbl 0188.19405
[2] Benoist, Y., Analyse harmonique sur les espaces symmétriques nilpotents, J. Funct. Anal., 59, 211-253 (1984) · Zbl 0555.43012
[3] Benoist, Y., Multiplicité un pour les espaces symmétriques exponentiels, Mem. Soc. Math. France (N.S.), 15, 1-37 (1984) · Zbl 0562.43005
[4] Cartier, P., Vecteurs différentiables dans les représentations unitaires des groupes de Lie, (Lecture Notes in Math., Vol. 514 (1975), Springer-Verlag: Springer-Verlag New York) · Zbl 0327.22011
[5] Corwin, L. J.; Greenleaf, F. P., Representations of nilpotent Lie groups and their applications, Part I, (Cambridge Studies in Advanced Math., Vol. 18 (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge/New York) · Zbl 0391.46033
[6] Corwin, L. J.; Greenleaf, F. P., Singular Fourier integral operators and representations of nilpotent Lie groups, Comm. Pure Appl. Math., 31, 681-705 (1978) · Zbl 0391.46033
[7] Corwin, L. J.; Greenleaf, F. P., A canonical approach to multiplicity formulas for induced and restricted representations of nilpotent Lie groups, Comm. Pure Appl. Math., 41, 1051-1088 (1988) · Zbl 0667.22004
[8] Corwin, L. J.; Greenleaf, F. P., Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity, Comm. Pure Appl. Math. (1992), to appear · Zbl 0812.43004
[9] Corwin, L. J.; Greenleaf, F. P.; Grelaud, G., Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304, 549-583 (1987) · Zbl 0629.22005
[10] Dixmier, J., Enveloping Algebras (1977), Amsterdam, translated as · Zbl 0152.33003
[11] Dixmier, J., Sur les représentations unitaires des groupes de Lie nilpotents, III, Canad. J. Math., 10, 321-348 (1958) · Zbl 0100.32401
[12] Dixmier, J.; Malliavin, P., Factorisation de fonctions et de vecteurs indéfiniment différentiables, Bull. Soc. Math. France, 102, 305-330 (1978) · Zbl 0392.43013
[13] Fujiwara, H., Représentations monomiales des groupes de Lie nilpotents, Pacific J. Math., 127, 329-351 (1987) · Zbl 0588.22008
[14] Goodman, R., Complex Fourier analysis on nilpotent Lie groups, Trans. Amer. Math. Soc., 160, 373-391 (1971) · Zbl 0225.22018
[15] Grelaud, G., Sur les représentations des groupes de Lie résolubles, (Thèse (1984), Univ. de Poitiers) · Zbl 0403.22013
[16] Howe, R. E., On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math., 73, 329-364 (1977) · Zbl 0383.22009
[17] Jacobsen, J., Invariant differential operators on some homogeneous spaces for solvable Lie groups, Aarhus Univ. Math. Inst., Various Publications Series, No. 34 (1982) · Zbl 0499.43011
[18] Lion, G., Résolubilité de certaines équations différentiels sur des groupes de Lie et des espaces homogènes (1985), preprint
[19] Lion, G., Résolubilité d’équations différentielles et représentations induites, J. Funct. Anal., 75, 211-259 (1987) · Zbl 0658.58047
[20] Lion, G., Convexité des espaces homogènes nilpotents et résolubilité des operateurs différentiels invariants (1987), preprint
[21] Lipsman, R., Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc., 313, 433-471 (1989) · Zbl 0683.22009
[22] Pedersen, N. V., Geometric quantization and the universal enveloping algebra of a nilpotent Lie group, Københavens Univ. Mat. Inst. preprint Series, No. 9 (1988)
[23] Pedersen, N. V., On the infinitesimal kernel of irreducible representations of nilpotent Lie groups, Bull. Soc. Math. France, 112, 423-467 (1984) · Zbl 0589.22009
[24] Penney, R., Abstract Plancherel theorems and a Frobenius reciprocity theorem, J. Funct. Anal., 18, 177-190 (1975) · Zbl 0305.22016
[25] Poulsen, N. S., On \(C^∞\)-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal., 9, 87-120 (1972) · Zbl 0237.22013
[26] Pukanszky, L., Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4), 4, 457-608 (1971) · Zbl 0238.22010
[27] Raïs, M., Solutions élémentaires des opérateurs différentiels bi-invariants sur une groupe de Lie nilpotent, C. R. Acad. Sci. Paris Sér. A, 273, 495-498 (1971) · Zbl 0236.46047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.