×

Notes on analytic Feynman integrable functionals. (English) Zbl 0808.28009

The authors prove the Feynman integrability for a wide class of functionals defined on the multiparameter Wiener space.
Let \(m^ \nu_ N\) be the Wiener measure on the space of functions on \([0,T]^ N\) that are continuous and take values in the \(\nu\)-dimensional space \(R^ \nu\). Let further \(F: C^ \nu_ N\to C\) be a functional such that for each \(\lambda> 0\) the Wiener integral \[ J(\lambda)= \int_{C^ \nu_ N} F(\lambda^{-1/2} x) dm^ \nu_ N(x) \] exists. If there exists an analytic continuation \(J^*\) of \(J\) onto the right half-plane \(C^ +\), then \(J^*\) is called the analytic Wiener integral. If now for a real non-zero \(q\) there exists \(\lim_{\lambda\to -iq} J^*(\lambda)\), then this limit is called the analytic Feynman integral of \(F\) with parameter \(q\). There are given conditions ensuring the analytic Feynman integrability for a wide class of functionals. In particular, the authors generalize a result by the second author, G. W. Johnson and D. L. Skoug [Pac. J. Math. 122, 11-33 (1986; Zbl 0594.28013)].

MSC:

28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)

Citations:

Zbl 0594.28013
Full Text: DOI

References:

[1] S. Albeverio and R. Hoegh-Krohn, Mathematical theory of Feynman path integrals , Lecture Notes Math. 523 (1976). · Zbl 0337.28009
[2] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals , Lecture Notes Math. 798 , (1980), 18-67. · Zbl 0439.28007
[3] K.S. Chang, G.W. Johnson and D.L. Skoug, The Feynman integral of quadratic potentials depending on two time variables , Pacific J. Math. 122 (1986), 11-33. · Zbl 0594.28013 · doi:10.2140/pjm.1986.122.11
[4] ——–, Functions in the Banach algebra \(S(\nu)\) , J. Korean Math. Soc. 24 (1987), 151-158. · Zbl 0895.46021
[5] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics , Rev. Mod. Phys. 20 (1948), 367-387. · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[6] R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals , McGraw Hill, New York, 1965. · Zbl 0176.54902
[7] G.W. Johnson, The equivalence of two approaches to the Feynman integral , J. Math. Phys. 23 (1982), 2090-2096. · Zbl 0496.60068 · doi:10.1063/1.525250
[8] G.W. Johnson and D.L. Skoug, Notes on the Feynman integral II, J. Funct. Anal. 41 (1981), 277-289. · Zbl 0459.28012 · doi:10.1016/0022-1236(81)90075-6
[9] E. Nelson, The use of the Wiener process in quantum theory , in The collected works of Nobert Wiener (P. Masani, ed.), Vol. III, MIT Press, 1964.
[10] C. Park and D.L. Skoug, The Feynman integral of quadratic potentials depending on \(n\) time variables , Nagoya Math. J. 110 (1988), 151-162. · Zbl 0655.28010
[11] ——–, A note on Paley-Wiener-Zygmund stochastic integrals , Proc. Amer. Math. Soc. 103 (1988), 591-601. · Zbl 0662.60063 · doi:10.2307/2047184
[12] D.L. Skoug, Feynman integrals involving quadratic potentials, stochastic integration formulas, and bounded variation for functions of several variables , Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 17 (1987), 331-346. · Zbl 0658.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.