×

Spacetime geometry with geometric calculus. (English) Zbl 1446.83003

Summary: Geometric Calculus is developed for curved-space treatments of General Relativity and comparison is made with the flat-space gauge theory approach by C. Doran and A. Lasenby [Geometric algebra for physicists. Cambridge: Cambridge University Press (2003; Zbl 1078.53001)] and Gull. Einstein’s Principle of Equivalence is generalized to a gauge principle that provides the foundation for a new formulation of General Relativity as a Gauge Theory of Gravity on a curved spacetime manifold. Geometric Calculus provides mathematical tools that streamline the formulation and simplify calculations. The formalism automatically includes spinors so the Dirac equation is incorporated in a geometrically natural way.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
35Q76 Einstein equations
58A05 Differentiable manifolds, foundations
15A66 Clifford algebras, spinors
81T13 Yang-Mills and other gauge theories in quantum field theory
83E05 Geometrodynamics and the holographic principle

Citations:

Zbl 1078.53001
Full Text: DOI

References:

[1] Doran, C.; Lasenby, A., Geometric Algebra for Physicists (2003), Cambridge: Cambridge U Press, Cambridge · Zbl 1078.53001
[2] Fock, V., Geometrisierung der Diracschen Theorie des Elektrons, Zeitshrift für Physik, 57, 261-277 (1929) · JFM 55.0513.06 · doi:10.1007/BF01339714
[3] Fock, V.; Iwanenko, D., Géométrie quantique linéaire et déplacement parallèle, Comptes Rendus des séances de L’Académie des Sciences, 188, 1470-1472 (1929) · JFM 55.0515.02
[4] Göckler, M.; Schücker, T., Differential Geometry (1987), Cambridge: Gauge Theories and Gravity. Cambridge U Press, Cambridge · Zbl 0649.53001
[5] Göckler, M., Schücker, T.: Differential Geometry, Gauge Theories and Gravity. Cambridge U Press, Cambridge (1987) · Zbl 0649.53001
[6] Goenner, H.:Local Isometric Embedding of Riemannian Manifolds and Einstein’s Theory of Gravitation. In Held (Ed.), General Relativity and Gravity, Vol. I, (Plenum, New York, 1980)
[7] Hestenes, D.:Differential Forms in Geometric Calculus. In F. Brackx, R. Delanghe, and H. Serras (eds), Clifford Algebras and their Applications in Mathematical Physics (Kluwer Academic, Dordrecht/Boston, 1993). pp. 269-285 · Zbl 0841.58001
[8] Hestenes, D., A Spinor Approach to Gravitational Motion and Precession, Int. J. Theor. Phys., 25, 589-598 (1986) · Zbl 0615.70015 · doi:10.1007/BF00670473
[9] Hestenes, D., Curvature Calculations with Spacetime Algebra, Int. J. Theor. Phys., 25, 581-588 (1986) · Zbl 0604.53040 · doi:10.1007/BF00670472
[10] Hestenes, D., Spacetime physics with geometric algebra, Am. J. Phys., 71, 691-704 (2003) · doi:10.1119/1.1571836
[11] Hestenes, D., Gauge Theory Gravity with Geometric Calculus, Found. Phys., 35, 1-67 (2005) · Zbl 1097.83025 · doi:10.1007/s10701-005-5828-y
[12] Hestenes, D.; Sobczyk, G., CLIFFORD ALGEBRA to GEOMETRIC CALCULUS, a Unified Language for Mathematics and Physics (1986), Dordrecht/Boston: Kluwer Academic, Dordrecht/Boston
[13] Hestenes, D., Sobczyk, G.: CLIFFORD ALGEBRA to GEOMETRIC CALCULUS, a Unified Language for Mathematics and Physics. Kluwer Academic, Dordrecht/Boston (1986) · Zbl 0541.53059
[14] Iliev, B., Is the principle of equivalence a principle?, J. Geom. Phys., 24, 209-222 (1998) · Zbl 0893.53041 · doi:10.1016/S0393-0440(97)00011-9
[15] Lasenby, A.; Doran, C.; Gull, S., Gravity, gauge theories and geometric algebra, Phil. Trans. R. Lond. A, 356, 487-582 (1998) · Zbl 0945.83023 · doi:10.1098/rsta.1998.0178
[16] Misner, C., Thorne, K., Wheeler, J.: [18], p. 356 demonstrate curvature calculation with differential forms
[17] Misner, C., Thorne, K., Wheeler, J.: [18], pp. 226-228 provide a fine pedagogical discussion of the tangent vector concept
[18] Misner, C., Thorne, K., Wheeler, J.: [18], pp. 226-241, follow Cartan in arguing at length for the heuristic value of equation (121) and the value of Cartan���s Calculus of Differential Forms
[19] Misner, C.; Thorne, K.; Wheeler, J., Gravitation (1973), San Francisco: Freeman, San Francisco
[20] Moussiaux, A.; Tombal, P., Geometric Calculus: A New Computational Tool for Riemannian Geometry, Int. J. Theor. Phys., 27, 613-621 (1988) · Zbl 0654.53002 · doi:10.1007/BF00668842
[21] Much more literature on extensions and applications of Geometric Algebra and Calculus can be accessed from the websites http://modelingnts.la.asu.edu and http://www.mrao.cam.ac.uk/ ,!clifford/
[22] Schroedinger, E.: Sitzungb. Preuss. Akad. Wiss. Phys.-Math. Kl. 105, (1932)
[23] Sobczyk, G.; Chisholm, J.; Common, A., Killing Vectors and Embedding of Exact Solutions in General Relativity, Clifford Algebras and their Applications in Mathematical Physics (D, 117-244 (1986), Boston: Reidel, Boston · Zbl 0602.53054
[24] Utiyama, R., Invariant Theoretical Interpretation of Interaction, Phys. Rev., 101, 1597-1607 (1956) · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[25] Weinberg, S., Gravitation and Cosmology (1972), New York: Wiley, New York
[26] Weyl, H., Elektron and Gravitation I, Zeitshrift für Physik, 56, 330 (1929) · JFM 55.0513.04 · doi:10.1007/BF01339504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.