×

Statistical volume element method for predicting microstructure-constitutive property relations. (English) Zbl 1194.74291

Summary: There is an inevitable need to establish multilength scale statistical microstructure-constitutive property relations in materials design. In this paper, we have developed a statistical volume element method to analyze, quantify, and calibrate such microstructure-constitutive property relations by statistical means. Statistical volume element simulations are adopted to predict material constitutive properties corresponding to various realizations of random microstructure configurations. A computing framework that links random configuration generators and finite element analysis has been developed. A statistical cause-effect analysis approach is proposed to study the influence of random material microstructure on material constitutive properties. Within the proposed approach, statistically significant microstructure parameters are first identified based on their linear impacts on material constitutive properties. Global sensitivity analysis is then employed to provide a more comprehensive importance ranking of these critical microstructure parameters considering both main and interaction effects. The uncertainties in material constitutive properties due to random microstructure configurations are quantified in terms of distributions, statistical moments, and correlations. The obtained probabilistic constitutive relations are used to calibrate the model parameters in a constitutive relation model following a statistical calibration process. The proposed approach is applied to examine a porous steel alloy material for demonstrative purposes.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Alber, I.; Bassani, J. L.; Khantha, M.; Vitek, V.; Wang, G. J., Grain boundaries as heterogeneous systems: atomic and continuum elastic properties, Philos. Trans.: Phys. Sci. Engrg., 339, 555-586 (1992)
[2] Alzebdeh, K.; Al-Ostaz, A.; Jasiuk, I.; Ostoja-Starzewski, M., Fracture of random matrix-inclusion composites: scale effects and statistics, Int. J. Solids Struct., 35, 2537-2566 (1998) · Zbl 0962.74535
[3] Avallone, E. A.; Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers (1996), McGraw-Hill Professional: McGraw-Hill Professional New York
[4] D.J. Bammann, M.L. Chiesa, G.C. Johnson, Modeling large deformation and failure in manufacturing processes, in: Theoretical and Applied Mechanics 1996: Proceedings of the XIXth International Congress of Theoretical and Applied Mechanics, Kyoto, Japan, 1996.; D.J. Bammann, M.L. Chiesa, G.C. Johnson, Modeling large deformation and failure in manufacturing processes, in: Theoretical and Applied Mechanics 1996: Proceedings of the XIXth International Congress of Theoretical and Applied Mechanics, Kyoto, Japan, 1996.
[5] Bammann, D. J.; Chiesa, M. L.; McDonald, A.; Kawahara, W. A.; Dike, J. J.; Revelli, V. D., Prediction of ductile failure in metal structures, Am. Soc. Mech. Eng., Appl. Mech. Div., 107, 7-12 (1990)
[6] Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 2391-2403 (1999)
[7] Burke, S. K.; Cousland, S. M.; Scala, C. M., Nondestructive characterization of advanced composite materials, Mater. Forum, 18, 85-109 (1994)
[8] Bystrom, J., Influence of the inclusions distribution on the effective properties of heterogeneous media, Composites: Part B, 34, 587-592 (2003)
[9] Chen, W.; Jin, R.; Sudjianto, A., Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty, J. Mech. Des., 127, 875-886 (2005)
[10] Clark, C. E., Importance sampling in Monte Carlo analyses, Oper. Res., 9, 603-620 (1961) · Zbl 0117.36905
[11] Cule, D.; Torquato, S., Generating random media from limited microstructural information via stochastic optimization, J. Appl. Phys., 86, 3428-3437 (1999)
[12] Fang, S. F.; Gertner, G. Z.; Shinkareva, S.; Wang, G. X.; Anderson, A., Improved generalized Fourier amplitude sensitivity test (FAST) for model assessment, Stat. Comput., 13, 221-226 (2003)
[13] Gall, K.; Horstemeyer, M. F.; Baskes, M. I.; Van Schilfgaarde, M., Atomistic simulations on the tensile debonding of an aluminum-silicon interface, J. Mech. Phys. Solids, 48, 2183-2212 (2000) · Zbl 1052.74502
[14] Hao, S.; Liu, W. K.; Moran, B.; Vernerey, F.; Olson, G. B., Multi-scale constitutive model computational framework for the design of ultra-high high toughness steels, J. Comput. Methods Appl. Mech. Engrg., 193, 1865-1908 (2004) · Zbl 1079.74504
[15] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[16] Horstemeyer, M. F.; Matalanis, M. M.; Sieber, A. M.; Botos, M. L., Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, Int. J. Plast., 16, 979-1015 (2000) · Zbl 0969.74596
[17] Horstemeyer, M. F.; Ramaswamy, S.; Negrete, M., Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase, Mech. Mater., 35, 675-687 (2003)
[18] Jin, R.; Chen, W.; Sudjianto, A., An efficient algorithm for constructing optimal design of computer experiments, J. Stat. Plan. Infer., 134, 268-287 (2005) · Zbl 1066.62075
[19] Kailasam, M.; Castaneda, P. P.; Willis, J. R., The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. II. Examples, Philos. Trans.: Math. Phys. Engrg. Sci., 355, 1853-1872 (1997) · Zbl 1067.74560
[20] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composite: statistical and numerical approach, Int. J. Solids Struct., 40, 3647-3679 (2003) · Zbl 1038.74605
[21] V. Kouznetsova, Computational homogenization for the multi-scale analysis of multi-phase materials, Ph.D. Dissertation, Technische Universiteit Eindhoven; 2002.; V. Kouznetsova, Computational homogenization for the multi-scale analysis of multi-phase materials, Ph.D. Dissertation, Technische Universiteit Eindhoven; 2002.
[22] Li, M.; Ghosh, S.; Richmond, O.; Weiland, H.; Rouns, T. N., Three dimensional characterization and modeling of particle reinforced metal matrix composites. Part I: quantitative description of microstructural morphology, Mater. Sci. Engrg. A, 265, 153-173 (1999)
[23] Li, Y. Y.; Cui, J. Z., The multi-scale computational method for the mechanics parameters of the materials with random distribution of multi-scale grains, Compos. Sci. Technol., 65, 1447-1458 (2005)
[24] H. Liu, W. Chen, A. Sudjianto, Relative entropy based method for global and regional sensitivity analysis in probabilistic design, in: 2004 ASME Design Automation Conference, Salt Lake City, UT, September 28-October 2, 2004.; H. Liu, W. Chen, A. Sudjianto, Relative entropy based method for global and regional sensitivity analysis in probabilistic design, in: 2004 ASME Design Automation Conference, Salt Lake City, UT, September 28-October 2, 2004.
[25] W.K. Liu, C. McVeigh, Predictive multiscale theory for design of heterogeneous materials, J. Comput. Mech. 2007, doi:10.1007/s00466-007-0176-8; W.K. Liu, C. McVeigh, Predictive multiscale theory for design of heterogeneous materials, J. Comput. Mech. 2007, doi:10.1007/s00466-007-0176-8 · Zbl 1304.74016
[26] Mcrae, G. J.; Tilden, J. W.; Seinfeld, J. H., Global sensitivity analysis – a computational implementation of the Fourier amplitude sensitivity test (FAST), Comput. Chem. Engrg., 6, 15-25 (1982)
[27] McVeigh, C.; Vernerey, F.; Liu, W. K.; Brinson, L. C., Multiresolution analysis for material design, J. Comput. Methods Appl. Mech. Engrg., 195, 5053-5076 (2006) · Zbl 1118.74040
[28] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1998), North-Holland · Zbl 0924.73006
[29] Ostoja-Starzewski, M., Material spatial randomness: from statistical to representative volume element, J. Probab. Engrg. Mech., 21, 112-132 (2006)
[30] Rahman, S.; Chakraborty, A., A stochastic micromechanical model for elastic properties of functionally graded materials, Mech. Mater., 39, 548-563 (2007)
[31] Rahman, S.; Wei, D., A univariate approximation at most probable point for higher-order reliability analysis, Int. J. Solids Struct., 43, 2820-2839 (2006) · Zbl 1120.74791
[32] Sankaran, S.; Zabaras, N., Computing property variability of polycrystals induced by grain size and orientation uncertainties, Acta Mater., 55, 2279-2290 (2007)
[33] Singh, H.; Gokhale, A. M.; Mao, Y.; Spowart, J. E., Computer simulations of realistic microstructures of discontinuously reinforced aluminum (DRA) composites, Acta Mater., 54, 2131-2143 (2006)
[34] Smith, P.; Torquato, S., Computer simulation results for the two-point probability function of composite media, J. Comput. Phys., 76, 176-191 (1988) · Zbl 0642.76112
[35] Sobol, I. M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 271-280 (2001) · Zbl 1005.65004
[36] Sobol, I. M., Sensitivity analysis for nonlinear mathematical models, J. Matematiche, 1, 407-414 (1993) · Zbl 1039.65505
[37] Tamhane, A. C.; Dunlop, D. D., Statistics and Data Analysis from Elementary to Intermediate (2000), Prentice Hall: Prentice Hall Saddle River, NJ
[38] Torquato, S., Statistical description of microstructures, Ann. Rev. Mater. Res., 32, 77-111 (2002)
[39] F. Vernerey, Multi-scale continuum theory for microstructured materials, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Northwestern University Evanston; 2006.; F. Vernerey, Multi-scale continuum theory for microstructured materials, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Northwestern University Evanston; 2006.
[40] Vernerey, F. J.; McVeigh, C.; Liu, W. K.; Moran, B.; Tewari, D.; Parks, D. M.; Olson, G. B., The 3D computational modeling of shear dominated ductile failure of steel, J. Miner. Met. Mater. Soc., 58, 45-51 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.