×

On the generalized Hyers-Ulam stability of module left \((m,n)\)-derivations. (English) Zbl 1267.39022

The stability problem of functional equations originates from a question of Ulam in 1940, concerning the stability of group homomorphisms. In 1941, D. H. Hyers gave a first affirmative answer to the question for Banach spaces. Let \(A\) be an algebra over the real or complex field \(\mathbb{F}\) and \(M\) be a left \(A\)-module. An additive mapping \(d:A\to M\) is called a module left \((m,n)\)-derivation if \[ (m+n)d(xy)=2mx.d(y)+2ny.d(x) \] holds for all \(x,y\in A\), where \(m\geq 0\), \(n\geq 0\) with \(m+n\neq 0\) are some fixed integers.
The main purpose of the present paper is to prove the following theorem:
Let \(A\) be a normed algebra, \(M\) a Banach left \(A\)-module, and \(F:A^2\to [0,\infty)\) a function such that \(F(2x,y)=\xi F(x,Y)\) and \(F(x,2y)=\chi F(x,y)\) for some scalars \(\xi,\chi\geq 0\), \(\xi\chi<1\). Suppose that \(f:A\to M\) is a map with the properties \[ \|f(x+y)-f(x)f(y)\|\leq F(x,y) \] for all \(x,y\in A\). Then there exists a unique module left \((m,n)\)-derivation \(d:A\to M\) such that \[ \|f(x)-d(x)\|\leq \frac{F(x,x)}{1-\xi\chi} \] for all \(x\in A\).

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B62 Functional inequalities, including subadditivity, convexity, etc.
39B52 Functional equations for functions with more general domains and/or ranges
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
46L57 Derivations, dissipations and positive semigroups in \(C^*\)-algebras
16W25 Derivations, actions of Lie algebras
Full Text: DOI

References:

[1] Ali, S., Fošner, A.: On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings. Alg. Colloq. (accepted) · Zbl 1309.16027
[2] Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[3] Brzdek J.: On a method of proving the Hyers–Ulam stability of functional equations on restricted domains. Austral. J. Math. Anal. Appl. 6, 1–10 (2009)
[4] Brzdek J., Pietrzyk A.: A note on stability of the general linear equation. Aequat. Math. 75, 267–270 (2008) · Zbl 1149.39018 · doi:10.1007/s00010-007-2894-6
[5] Fošner, M., Vukman, J.: On some functional equation arising from (m, n)-Jordan derivations and commutativity of prime rings. Rocky Mount. J. Math. (to appear)
[6] Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[7] Hyers D.H., Isac G., Rassias Th.M.: On the asymptoticity aspect of Hyers–Ulam stability of mappings. Proc. Am. Math. Soc. 126, 425–430 (1998) · Zbl 0894.39012 · doi:10.1090/S0002-9939-98-04060-X
[8] Isac G., Rassias Th.M.: Stability of {\(\psi\)}-additive mappings: Applications to nonlinear analysis. Int. J. Math. Math. Sci. 19, 219–228 (1996) · Zbl 0843.47036 · doi:10.1155/S0161171296000324
[9] Jun K.W., Kim H.-M.: On the stability of Euler–Lagrange type cubic mappings in quasi-Banach spaces. J. Math. Anal. Appl. 332, 1334–1349 (2007) · Zbl 1117.39017 · doi:10.1016/j.jmaa.2006.11.024
[10] Jung Y.-S.: On the generalized Hyers–Ulam stability of module left derivations. J. Math. Anal. Appl. 339, 108–114 (2008) · Zbl 1134.39023 · doi:10.1016/j.jmaa.2007.07.003
[11] Kim H.-M., Kang S.-Y., Chang I.-S.: On functional inequalities originating from module Jordan left derivations. J. Inequalities Appl. 2008, 1–9 (2008) · Zbl 1195.11030 · doi:10.1155/2008/371295
[12] Maligranda L.: A result of Tosio Aoki about a generalization of Hyers–Ulam stability of additive functions–a question of priority. Aequat. Math. 75, 289–296 (2008) · Zbl 1158.39019 · doi:10.1007/s00010-007-2892-8
[13] Moszner Z.: On the stability of functional equations. Aequat. Math. 77, 33–88 (2009) · Zbl 1207.39044 · doi:10.1007/s00010-008-2945-7
[14] Park C.: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. 275, 711–720 (2002) · Zbl 1021.46037 · doi:10.1016/S0022-247X(02)00386-4
[15] Park C.: Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras. J. Math. Anal. Appl. 293, 419–434 (2004) · Zbl 1051.46052 · doi:10.1016/j.jmaa.2003.10.051
[16] Park C.: Approximate homomorphisms on JB*-triples. J. Math. Anal. Appl. 306, 375– 381 (2005) · Zbl 1104.46042 · doi:10.1016/j.jmaa.2004.12.043
[17] Park C.: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36, 79–97 (2005) · Zbl 1091.39007 · doi:10.1007/s00574-005-0029-z
[18] Park C.: Isomorphisms between unital C*-algebras. J. Math. Anal. Appl. 307, 753–762 (2005) · Zbl 1101.39015 · doi:10.1016/j.jmaa.2005.01.059
[19] Park C.: Homomorphisms between Lie JC*-algebras and Cauchy–Rassias stability of Lie JC*-algebra derivations. J. Lie Theory 15, 393–414 (2005) · Zbl 1091.39006
[20] Park C., Cho Y., Han M.: Stability of functional inequalities associated with Jordan–von Neumann type additive functional equations. J. Inequalities Appl. 2007, 1–12 (2007) · Zbl 1133.39024
[21] Park C., Hou J., Ho S.: On homomorphisms between JC*-algebras and between Lie C*-algebras. Acta Math. Sin. 21, 1391–1398 (2005) · Zbl 1121.39030 · doi:10.1007/s10114-005-0629-y
[22] Rassias J.M.: On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126–130 (1982) · Zbl 0482.47033 · doi:10.1016/0022-1236(82)90048-9
[23] Rassias J.M.: On approximation of approximately linear mappings by linear mappings. Bull. Sci. Math. 108, 445–446 (1984) · Zbl 0599.47106
[24] Rassias J.M.: Solution of a problem of Ulam. J. Approx. Theory 57, 268–273 (1989) · Zbl 0672.41027 · doi:10.1016/0021-9045(89)90041-5
[25] Rassias J.M.: Solution of a stability problem of Ulam. Discuss. Math. 12, 95–103 (1992) · Zbl 0779.47005
[26] Rassias J.M.: Alternative contraction principle and alternative Jensen and Jensen type mappings. Int. J. Appl. Math. Stat. 2, 92–101 (2005)
[27] Rassias J.M.: On the Cauchy–Ulam stability of the Jensen equation in C*-algebras. Int. J. Pure. Appl. Math. Stat. 4, 1–10 (2006)
[28] Rassias J.M.: Refined Hyers–Ulam approximation of approximately Jensen type mappings. Bull. Sci. Math. 131, 89–98 (2007) · Zbl 1112.39025 · doi:10.1016/j.bulsci.2006.03.011
[29] Rassias Th.M.: On the stability of the linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[30] Rassias Th.M.: The problem of SM. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246, 352–378 (2000) · Zbl 0958.46022 · doi:10.1006/jmaa.2000.6788
[31] Rassias Th.M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264–284 (2000) · Zbl 0964.39026 · doi:10.1006/jmaa.2000.7046
[32] Rassias Th.M.: Functional Equations, Inequalities and Applications. Kluwer, Dordrecht (2003)
[33] Rassias Th.M., Šemrl P.: On the behavior of mappings which do not satisfy Hyers–Ulam stability. Proc. Am. Math. Soc. 114, 989–993 (1992) · Zbl 0761.47004 · doi:10.1090/S0002-9939-1992-1059634-1
[34] Šemrl P.: The functional equation of multiplicative derivation is superstable on standard operator algebras. Integr. Equ. Oper. Theory 18, 118–122 (1994) · Zbl 0810.47029 · doi:10.1007/BF01225216
[35] Ulam S.M.: A Collection of the Mathematical Problems. Interscience Publication, New York (1960) · Zbl 0086.24101
[36] Ulam S.M.: Problems in Modern Mathematics. Wiley, New York (1964) · Zbl 0137.24201
[37] Vukman J.: Jordan left derivations on semiprime rings. Math. J. Okayama Univ. 39, 1–6 (1997) · Zbl 0937.16044
[38] Vukman J.: On left Jordan derivations of rings and Banach algebras. Aequat. Math. 75, 260–266 (2008) · Zbl 1155.46019 · doi:10.1007/s00010-007-2872-z
[39] Vukman J.: On (m, n)-Jordan derivations and commutativity of prime rings. Demonstr. Math. 41, 773–778 (2008) · Zbl 1167.16031
[40] Vukman J., Kosi-Ulbl I.: On some equations related to derivations in rings. Internat. J. Math. Math. Sci. 17, 2703–2710 (2005) · Zbl 1100.16031 · doi:10.1155/IJMMS.2005.2703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.